- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
GeoRef Subject
-
all geography including DSDP/ODP Sites and Legs
-
Africa
-
Southern Africa
-
South Africa
-
Bushveld Complex (1)
-
-
-
-
Alpine Fault (1)
-
Arctic region
-
Greenland
-
South Greenland (1)
-
-
-
Asia
-
Middle East
-
Turkey
-
Anatolia (1)
-
Menderes Massif (1)
-
-
-
-
Australasia
-
Australia
-
Queensland Australia
-
Cloncurry mining district (1)
-
Ernest Henry Deposit (1)
-
-
Western Australia
-
Eastern Goldfields (1)
-
Fraser Range (1)
-
Yilgarn Craton (2)
-
-
-
New Zealand (1)
-
Papua New Guinea (1)
-
-
Canada
-
Western Canada
-
Manitoba
-
Snow Lake Manitoba (1)
-
-
-
-
Europe
-
Western Europe
-
Scandinavia
-
Finland
-
North Karelia Finland
-
Outokumpu Finland (1)
-
-
-
-
United Kingdom
-
Great Britain
-
Scotland
-
Moine thrust zone (1)
-
-
-
-
-
-
Kimberley Basin (1)
-
South Island (1)
-
-
commodities
-
graphite deposits (1)
-
metal ores
-
base metals (1)
-
cobalt ores (1)
-
copper ores (3)
-
gold ores (11)
-
IOCG deposits (1)
-
lead ores (1)
-
lead-zinc deposits (1)
-
mercury ores (1)
-
silver ores (1)
-
uranium ores (1)
-
zinc ores (2)
-
-
mineral deposits, genesis (14)
-
mineral exploration (4)
-
mineral resources (1)
-
-
elements, isotopes
-
carbon (1)
-
metals
-
gold (1)
-
-
-
geologic age
-
Cenozoic
-
Quaternary
-
Holocene (1)
-
Pleistocene (1)
-
-
Tertiary
-
Neogene
-
Miocene (2)
-
Pliocene (1)
-
-
Paleogene
-
Oligocene
-
upper Oligocene (1)
-
-
-
-
-
Precambrian
-
Archean
-
Neoarchean (1)
-
-
upper Precambrian
-
Proterozoic
-
Isan Orogeny (1)
-
Paleoproterozoic (3)
-
-
-
-
-
igneous rocks
-
igneous rocks
-
plutonic rocks
-
ultramafics (2)
-
-
volcanic rocks
-
komatiite (1)
-
-
-
ophiolite (1)
-
-
metamorphic rocks
-
metamorphic rocks
-
metaigneous rocks
-
metabasalt (1)
-
metadiorite (1)
-
-
mylonites (1)
-
-
ophiolite (1)
-
-
minerals
-
carbonates
-
ankerite (1)
-
calcite (1)
-
-
minerals (1)
-
native elements
-
graphite (1)
-
-
silicates
-
chain silicates
-
amphibole group (1)
-
-
framework silicates
-
silica minerals
-
quartz (1)
-
-
-
sheet silicates
-
chlorite group
-
chlorite (1)
-
-
sericite (1)
-
-
-
sulfides
-
nickel sulfides (1)
-
-
-
Primary terms
-
Africa
-
Southern Africa
-
South Africa
-
Bushveld Complex (1)
-
-
-
-
Arctic region
-
Greenland
-
South Greenland (1)
-
-
-
Asia
-
Middle East
-
Turkey
-
Anatolia (1)
-
Menderes Massif (1)
-
-
-
-
Australasia
-
Australia
-
Queensland Australia
-
Cloncurry mining district (1)
-
Ernest Henry Deposit (1)
-
-
Western Australia
-
Eastern Goldfields (1)
-
Fraser Range (1)
-
Yilgarn Craton (2)
-
-
-
New Zealand (1)
-
Papua New Guinea (1)
-
-
Canada
-
Western Canada
-
Manitoba
-
Snow Lake Manitoba (1)
-
-
-
-
carbon (1)
-
Cenozoic
-
Quaternary
-
Holocene (1)
-
Pleistocene (1)
-
-
Tertiary
-
Neogene
-
Miocene (2)
-
Pliocene (1)
-
-
Paleogene
-
Oligocene
-
upper Oligocene (1)
-
-
-
-
-
chemical analysis (1)
-
crust (4)
-
data processing (5)
-
deformation (9)
-
Europe
-
Western Europe
-
Scandinavia
-
Finland
-
North Karelia Finland
-
Outokumpu Finland (1)
-
-
-
-
United Kingdom
-
Great Britain
-
Scotland
-
Moine thrust zone (1)
-
-
-
-
-
-
faults (8)
-
folds (2)
-
foliation (1)
-
fractures (1)
-
geophysical methods (6)
-
geophysics (1)
-
graphite deposits (1)
-
ground water (1)
-
heat flow (1)
-
igneous rocks
-
plutonic rocks
-
ultramafics (2)
-
-
volcanic rocks
-
komatiite (1)
-
-
-
intrusions (2)
-
lineation (1)
-
magmas (1)
-
metal ores
-
base metals (1)
-
cobalt ores (1)
-
copper ores (3)
-
gold ores (11)
-
IOCG deposits (1)
-
lead ores (1)
-
lead-zinc deposits (1)
-
mercury ores (1)
-
silver ores (1)
-
uranium ores (1)
-
zinc ores (2)
-
-
metals
-
gold (1)
-
-
metamorphic rocks
-
metaigneous rocks
-
metabasalt (1)
-
metadiorite (1)
-
-
mylonites (1)
-
-
metamorphism (4)
-
metasomatism (6)
-
mineral deposits, genesis (14)
-
mineral exploration (4)
-
mineral resources (1)
-
mineralogy (1)
-
minerals (1)
-
Mohorovicic discontinuity (1)
-
orogeny (1)
-
paragenesis (4)
-
plate tectonics (1)
-
Precambrian
-
Archean
-
Neoarchean (1)
-
-
upper Precambrian
-
Proterozoic
-
Isan Orogeny (1)
-
Paleoproterozoic (3)
-
-
-
-
sedimentary rocks (1)
-
spectroscopy (1)
-
springs (1)
-
stratigraphy (1)
-
structural analysis (3)
-
structural geology (1)
-
tectonics (6)
-
X-ray analysis (1)
-
-
rock formations
-
Alpine Schist (1)
-
-
sedimentary rocks
-
sedimentary rocks (1)
-
Abstract Economically viable concentrations of mineral resources are uncommon among the predominantly silicate-dominated rocks in Earth’s crust. Most ore deposits that were mined in the past or are currently being extracted were found at or near Earth’s surface, often serendipitously. To meet the future demand for mineral resources, exploration success hinges on identifying targets at depth, which, on the one hand, requires advances in detection and interpretation techniques for geophysical and geochemical data. On the other hand, however, our knowledge of the chain of events that lead to ore deposit formation is limited. As geoscience embraces an integrated Earth systems approach, considering the geodynamic context of ore deposits can provide a step change in understanding why, how, when and where geological systems become ore-forming systems. Contributions to this volume address the future resources challenge by: (i) applying advanced microscale geochemical detection and characterization methods; (ii) introducing more rigorous 3D Earth models; (iii) exploring critical behaviour and coupled processes; (iv) evaluating the role of geodynamic and tectonic setting; and (v) applying 3D structural models to characterize specific ore-forming systems.
Microscale data to macroscale processes: a review of microcharacterization applied to mineral systems
Abstract Microanalysis can provide rapid, quantitative characterization of mineral systems that complements the field- and core-scale observations traditionally made in ore deposits. We review recent innovations in microanalytical procedures and their application to studies of ore deposits. Case studies are presented examining how microanalysis can provide constraints on macroscopic processes within mineral systems. Synchrotron X-ray fluorescence shows centimetre-scale chemical variations associated with proximity to mineralization in samples from Sunrise Dam Gold Mine, Western Australia. Pseudomorphs of igneous plagioclase and chemically driven recrystallization interpreted from electron backscatter diffraction suggest that the system was dominated by fluid-driven brecciation with very little shearing. Both the fluid chemistry and fluid pressure evolved during a protracted sequence of vein formation and alteration accompanying gold mineralization. A second case study of sulphide mineralogy at the Mt Keith nickel sulphide deposit, Western Australia demonstrates how X-ray computed tomography combined with trace element mapping can constrain the chemistry and dynamics of magmatic systems. Large-scale interaction between silicate and sulphide melts, shown by homogenous palladium enrichment in pentlandite, leads to a large proportion of globular ores with a high nickel content. Increasing use of microanalysis in ore deposit geology is resulting in the constant reassessment of established models for ore genesis though a combination of micro- and macroscale datasets.
Abstract The spatial relationship between different rock types and relevant structural features is an important aspect in the characterization of ore-forming systems. Our knowledge about this geological architecture is often captured in 3D structural geological models. Multiple methods exist to generate these models, but one important problem remains: structural models often contain significant uncertainties. In recent years, several approaches have been developed to consider uncertainties in geological prior parameters that are used to create these models through the use of stochastic simulation methods. However, a disadvantage of these methods is that there is no guarantee that each simulated model is geologically reasonable – and that it forms a valid representation in the light of additional data (e.g. geophysical measurements). We address these shortcomings here with an approach for the integration of structural geological and geophysical data into a framework that explicitly considers model uncertainties. We combine existing implicit structural modelling methods with novel developments in probabilistic programming in a Bayesian framework. In an application of these concepts to a gold-bearing greenstone belt in Western Australia, we show that we are able to significantly reduce uncertainties in the final model by additional data integration. Although the final question always remains whether a predicted model suite is a suitable representation of accuracy or not, we conclude that our application of a Bayesian framework provides a novel quantitative approach to addressing uncertainty and optimization of model parameters. Supplementary material: Trace plots for selected parameters and plots of calculated Geweke statistics are available at https://doi.org/10.6084/m9.figshare.c.3899719
Abstract 3D lithofacies and physical rock property models were generated to interpret 3D seismic data acquired over the Lalor volcanogenic massive sulphide deposit, Manitoba, Canada. The lithofacies model revealed that strong seismic reflectivity is associated with ore–host rock and mafic–felsic lithofacies contacts, including their hydrothermally altered equivalents. Different physical rock property models were subjected to 3D seismic forward modelling using the SOFI3D finite difference code. Seismic synthetics from discrete and interpolated models in which kriging of P-wave velocity and density was conditioned by curvilinear grids conformable to the 3D-modelled geological structure showed a much better match to the seismic data in comparison with those generated by kriging in Cartesian space. Synthetics from these curvilinear grid models corroborate the origin of seismic reflectors, as qualitatively inferred from the lithofacies model. Seismic synthetics generated from physical rock property models in which physical rock properties were augmented by densely sampled secondary variables, such as FeO percentage, enhanced lateral continuity of seismic reflectivity, although these co-kriged petrophysical models were not more accurate than their kriged equivalents. The physical rock property modelling methodology was also useful for testing the utility of passive interferometric seismic surveys, as this highlighted the limitations of the discrete physical rock property model.
Coupling of fluid flow to permeability development in mid- to upper crustal environments: a tale of three pressures
Abstract Orogenic gold systems are open, flow-controlled thermodynamic systems and generally occur in mid- to upper crustal environments where there is strong coupling between fluid flow and dilatant plastic deformation. This paper considers the principles involved in such coupling, with an emphasis on the elastic and plastic volume changes and their influence on the fluid, mechanical and thermodynamic pressures. Some misconceptions regarding the magnitudes of these three distinctly different pressures and their influences on fluid flow and chemical equilibrium are addressed, with examples at both the tens of metres scale and the crustal scale. We show that the mean stress is less than twice the lithostatic stress for Mohr–Coulomb materials with cohesion and the thermodynamic pressure only has meaning under isentropic conditions and hence is less than many previously published estimates based on high mean stresses. At the crustal scale, we also include the role of critical behaviour in influencing the geometry and magnitudes of fluid pressure gradients and fluid flow velocities in open, flow-controlled systems.
Episodic modes of operation in hydrothermal gold systems: Part I. Deformation, mineral reactions and chaos
Abstract Episodic fluctuations in fluid pressure and temperature are characteristic of the behaviour of orogenic gold systems and are commonly attributed to processes external to the system, such as seismic events and associated adiabatic fault valve or suction pump/piston behaviour; any temperature changes are attributed to the adiabatic nature of the process. Such processes are commonly associated with fluctuations in fluid pressure with little, if any, changes in temperature. We describe aseismic, non-adiabatic processes internal to the hydrothermal system that lead to episodic modes of temperature and fluid pressure behaviour and the deposition of gold. These gold deposition processes are essentially controlled by localized changes in temperature; such temperature-dependent gold deposition processes are normally thought of as inconsequential. We propose that internal episodic behaviour is fundamental in hydrothermal mineralizing systems associated with orogenic gold deposits. Importantly, the time period for these hydrothermal events appears to be small relative to metamorphic systems, with 1–2 myr as an upper limit. This has important ramifications for rates of heat production and for the resultant kinetics of mineral reactions during alteration and mineralization. We explore these systems as non-linear, non-equilibrium dynamic, open flow systems.
Episodic modes of operation in hydrothermal gold systems: Part II. A model for gold deposition
Abstract Coupling between the physical processes intrinsic to a hydrothermal system can lead to episodic and chaotic behaviour. Such behaviour includes variations in both space and time of the temperature, fluid pressure and activity of H 2 S, which result in the deposition of alteration mineral assemblages, zoned pyrite and gold; these variations are multifractal. In particular, the coupling of deformation and simultaneous endothermic and exothermic reactions with fluid flow leads to the highly localized deposition of gold. We discuss the physical and chemical mechanisms for such episodic and localization behaviour and explore the non-linear dynamic reasons why such mechanisms are recorded in the multifractal paragenetic sequence and deformation history. The synchronization of intrinsic episodicity as described here and extrinsic forcing induced by episodic seismicity provides another mechanism for enhancing the yield of gold deposition processes and hence the grade of orogenic gold deposits.
Abstract The spatial distributions of mineralization and alteration in hydrothermal systems are complex and are often considered to be cryptic and problematic to quantify. We used wavelet analysis of conventional hyperspectral drillcore logs to demonstrate quantitatively that primary Au mineralization, common vein-hosted mineralogy (calcite and ankerite), host rock alteration mineralogy (sericite and chlorite) and regional-scale metamorphic assemblages (amphibole) organize spatially as multifractals. This documentation of multifractal spatial organization in Au and alteration mineralogy is sufficient to show that they are the result of underlying deterministic dynamic processes as opposed to random stochastic processes. The application of wavelets to three ore bodies (GQ, Vogue and Cosmo East) from the highly endowed Archaean Sunrise Dam hydrothermal Au system of Western Australia shows that the spatial organizations of Au and ankerite are more closely associated in GQ than in Vogue. The spatial organization of Au in Vogue is more strongly associated with calcite. Primary Au mineralization and infill carbonate mineralogy are more complexly organized than sericitic and chloritic host rock alteration. Although demonstrated here for a hydrothermal system, wavelet analysis is readily applicable to downhole or outcrop data from any deposit type.
Textural changes of graphitic carbon by tectonic and hydrothermal processes in an active plate boundary fault zone, Alpine Fault, New Zealand
Abstract Graphitization in fault zones is associated both with fault weakening and orogenic gold mineralization. We examine processes of graphitic carbon emplacement and deformation in the active Alpine Fault Zone, New Zealand by analysing samples obtained from Deep Fault Drilling Project (DFDP) boreholes. Optical and scanning electron microscopy reveal a microtextural record of graphite mobilization as a function of temperature and ductile then brittle shear strain. Raman spectroscopy allowed interpretation of the degree of graphite crystallinity, which reflects both thermal and mechanical processes. In the amphibolite-facies Alpine Schist, highly crystalline graphite, indicating peak metamorphic temperatures up to 640°C, occurs mainly on grain boundaries within quartzo-feldspathic domains. The subsequent mylonitization process resulted in the reworking of graphite under lower temperature conditions (500–600°C), resulting in clustered (in protomylonites) and foliation-aligned graphite (in mylonites). In cataclasites, derived from the mylonitized schists, graphite is most abundant (<50% as opposed to <10% elsewhere), and has two different habits: inherited mylonitic graphite and less mature patches of potentially hydrothermal graphitic carbon. Tectonic–hydrothermal fluid flow was probably important in graphite deposition throughout the examined rock sequences. The increasing abundance of graphite towards the fault zone core may be a significant source of strain localization, allowing fault weakening. Supplementary material: Raman spectra of graphite from the Alpine Fault rocks is available at https://doi.org/10.6084/m9.figshare.c.3911797
Abstract Neoarchean rocks of the Tropicana Zone, including granites with subduction-zone affinities, formed in a terrane adjacent to, or on the margin of, the Yilgarn Craton at the commencement of a long-lived, amphibolite to granulite facies event – the 2722–2554 Ma Atlantis Event. Early stages of this event overlap with extensive komatiite emplacement within the Eastern Goldfields Superterrane (Yilgarn Craton), suggestive of a plume-related rift environment, which was followed by 2660–2630 Ma greenschist facies, orogenic gold mineralization. This indicates differences in the tectonic evolution of the Tropicana Zone compared with within the craton, although isotopic data show similarities in crustal sources. At c. 2520 Ma, the Tropicana Zone was retrogressed to greenschist facies as it was thrust onto the Yamarna Terrane (Yilgarn Craton), forming a northwesterly directed fold-and-thrust belt above the flat-lying Plumridge Detachment. This fold-and-thrust belt is host to the c. 2520 Ma, Tropicana gold deposit. The Plumridge Detachment may extend north to the Yamarna greenstone belt, linking to the Yamarna Shear Zone – the boundary between the Burtville and Yamarna Terranes. The fertility of the Tropicana Zone is related to its Neoarchean geodynamic setting within a continental arc environment, implying that deformed margins of Archean cratons may be prospective for Neoarchean Au deposits.
Abstract An integrated interpretation of the east Kimberley, northern Western Australia was completed to determine mineral prospectivity, and was centred on a portion of a magnetotelluric (MT) survey conducted across the entire Kimberley Craton and surrounding orogens. A structural geophysical interpretation used potential field data, and was constrained by geological field observations, petrophysics, remote sensing and understanding of the tectonic history of the region. Potential field forward modelling located along the same survey traverse as the MT data allowed comparison between the two datasets and their interpretations revealing interesting features suggesting the presence of large-scale structures, the presence of mineralization deep in the crust, and where mineralization may be at or near the surface. The King River Fault is shown from both the MT inversion and potential field modelling as a crustal-scale, west-dipping structure, the footwall of which bounds the western side of a large resistive body. A conductive anomaly is also located on the hanging wall of the King River Fault. Our assessment suggests that graphitic rocks, most likely with some sulphide content, contribute to the strength of this anomaly, and highlights the potential of the east Kimberley to host graphite and base metal deposits.
The relationship between mineralization and tectonics at the Kainantu gold–copper deposit, Papua New Guinea
Abstract Epithermal veins and breccias at the Kainantu gold–copper deposit in Papua New Guinea, host gold mineralization in NW–SE steeply dipping lodes. The lodes are parallel to a pre-mineralization dextral strike-slip shear-zone network, which is itself parallel in places to an early greenschist-facies cleavage in basement schists. The cleavage, shear zone and veins are all cut by dextral strike-slip faults. High Au grades correlate with areas of obliquity between the shear-zone fabrics and the cleavage, and plunge at approximately 40° SE in the plane of the lodes – coincident with minor fold axes related to a crenulation cleavage in the basement rocks. This clear structural history shows that gold mineralization was confined to a particular late structural event, but lode geometry was influenced by all previous structures, as well as being displaced by post-mineralization faulting. The north–south shortening recorded through most of the tectonic history can be related to Tertiary convergence along the major plate boundary located approximately 15 km north of the mine. However, mineralization occurred under a different tectonic regime from the current north–south convergence, when there was a change of tectonics between 9 and 6 Ma, possibly related to delamination.
Abstract Lithospheric thinning and crustal extension have shaped the Alpine orogen in western Anatolia since the late Oligocene, resulting in the denudation of one of Earth’s largest metamorphic core complexes, the Menderes Massif. We review locations and characteristics of geothermal fields and of Miocene mineral deposits in the context of crustal structure and geodynamic processes. Thermal spring locations show a close spatial association with active fault zones; the largest geothermal areas are located in the widest graben and at fault intersections, but show little relation to volcanic activity. During the first stage of tectonic denudation in the Miocene, epithermal, porphyry-type gold and structurally controlled base-metal deposits formed synchronously with K-rich volcanic and plutonic complexes in the northern Menderes Massif. Depositional environments favoured the formation of lignite, sedimentary uranium and borate deposits. Throughout this phase of extension in a hot continental setting, secondary porosity caused by brittle faulting of metamorphic basement rocks provided the key pathways for fluids and magmas. Although the Menderes Massif has remained in a similar position relative to active plate boundaries from the Miocene to the present, three significant changes in subcontinental mantle dynamics affected the nature of hydrothermal flow. First, the partial removal of lithospheric mantle changed the primary source component of magmatic rocks and metals from metasomatized lithosphere mantle to asthenospheric mantle. Secondly, surface uplift and progressive crustal extension led to segmentation of the Miocene land surface along NNE–SSW- and east–west-orientated fault zones, which changed the overall structural control on crustal permeability. Finally, hydrothermal flow changed from locally magmatic driven, to focused flow of topographically and thermally driven fluids in the crust, with high background heat flow caused by regional upwelling of the asthenosphere. The Menderes Massif is a continental tectonic domain that has experienced rapid thinning of lithospheric mantle and crustal extension in an overall convergent plate tectonic setting. The tectonic and geodynamic framework for evolving hydrothermal activity in western Anatolia may be applicable to other ore-forming systems in hot, extending continental crust in Earth’s history. Supplementary material: Supplement 1: Compilation of 124 thermal spring temperature measurements from Akkuş et al. (2005); Supplement 2: Compilation of 127 geothermal well temperature measurements from Akkuş et al. (2005) is available at https://doi.org/10.6084/m9.figshare.c.3803935
The Windimurra Igneous Complex: an Archean Bushveld?
Abstract The Archean Windimurra Igneous Complex consists of distinct components, including a thick layered series, with a cumulate mineral stratigraphy similar to the zones identified in the well-studied Bushveld Complex, South Africa. The complex is part of the plume-related and laterally extensive 2.81 Ga Meeline Suite, the intrusive component of a large igneous province. It is an anhydrous tholeiitic suite consisting of five layered mafic–ultramafic intrusions 25–85 km in the long dimension. These intrusions host significant V–Ti mineralization in their fractionated, Fe-rich upper zones. Recent mapping, combined with aeromagnetic, gravity and seismic surveys, has provided unparalleled three-dimensional constraints on the largest of these intrusions. The results of three-dimensional modelling show that it is thicker than previously recognized. At c. 11 km, it is the thickest layered mafic–ultramafic intrusion identified globally and one of the largest such intrusions volumetrically. The mineral zone stratigraphy and many other features associated with this complex share similarities with the c. 800 myr younger Bushveld Complex. On a large scale, three discordant units are delineated geometrically, providing fundamental constraints on a multi-stage genetic model for magma emplacement. The indication of a thick, subsurface Ultramafic Zone provides a potential target for Ni–Cr–platinum group element mineralization.
Abstract Iron oxide–Cu–Au (IOCG) deposits encompass a range of ore body shapes, including strata-bound replacement ores and hydrothermal breccias. We use the implicit method to make a detailed three-dimensional geological model of a strata-bound IOCG in the Cloncurry District, the E1 Group, to elucidate structural controls on mineralization. This model is compared with the nearby, world-class, Ernest Henry breccia-hosted IOCG deposit. Cu–Au mineralization in the E1 Group occurs as structurally controlled, mainly strata-bound, replacement bodies hosted in metasedimentary and metavolcaniclastic rocks intercalated with barren meta-andesite. Replacement bodies in the E1 Group conform to a series of NNW-plunging folds formed in regional D 2 during peak metamorphism. Folding was followed by local D 3 /regional D 4 shortening, which formed a dextral, transpressional Riedel brittle to ductile system along the regional Cloncurry Fault Zone. Modelling suggests that much of the Cu–Au mineralization is controlled by synthetic R structures associated with this Riedel system. The deformation sequence at Ernest Henry is comparable, but differences in host rock rheology, permeability and fluid pressure may explain the variation in ore body types and total Cu–Au resource between the two deposits. The results carry implications for other districts containing these styles of IOCG mineralization. Supplementary materials: Sup 1: Probability plots of assay data for modelled elements. Plots made in ioGAS software. Power transform applied to y -axes of all elements. Note that Fe, P and S do not follow normal/log-normal distributions. Sup 2: Summary statistics of assay data for modelled elements. A description of the rock type (lithology) codes used in the geological model are available in Sup 3. The 3D models presented in this paper are available as supplementary data online (Sup 4) and may be viewed in the free Leapfrog Viewer program, which can be downloaded from http://www.leapfrog3d.com/ . These supplementary files are available at https://doi.org/10.6084/m9.figshare.c.3729946
Abstract Field, drillcore and geochemical data are used to create a three-dimensional implicit model to assess the controls on gold mineralization at the Nalunaq orogenic gold deposit in South Greenland. Gold occurs in narrow quartz veins with variable dips averaging 34° SE that cut meta-basic rocks. The bulk of the mineralization is contained within a single gold–quartz vein, named the Main Vein. Within this vein, gold is concentrated into three ore shoots plunging 20–25° NE, corresponding to the South, Target and Mountain blocks of the Nalunaq gold mine. Gold anomalies in drillcores are identified updip and downdip from the current mine workings. Modelling reveals that structural controls have the greatest influence on the location of gold. Flexures in the Main Vein correspond to changes in the host rock lithology and the gold grade is highest where the quartz vein is steepest. Where late-stage faults intercept the Main Vein, gold grades are lower. The comprehensive gold assay data from the mine, which are integrated with structural observations in the implicit model, refine the structural interpretation of the Nalunaq gold deposit, highlighting the ore shoot geometry and delineating the minimum extents of mineralization beyond the currently mined areas.
Economically viable concentrations of mineral resources are uncommon in Earth’s crust. Most ore deposits that were mined in the past or are currently being extracted were found at or near Earth’s surface, often serendipitously. To meet the future demand for mineral resources, exploration success hinges on identifying targets at depth. Achieving this requires accurate and informed models of the Earth’s crust that are consistent with all available geological, geochemical and geophysical information, paired with an understanding of how ore-forming systems relate to Earth’s evolving structure. Contributions to this volume address the future resources challenge by (i) applying advanced microscale geochemical detection and characterization methods, (ii) introducing more rigorous 3D Earth models, (iii) exploring critical behaviour and coupled processes, (iv) evaluating the role of geodynamic and tectonic setting and (v) applying 3D structural models to characterize specific ore-forming systems.