- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
GeoRef Subject
-
all geography including DSDP/ODP Sites and Legs
-
Oceania
-
Melanesia
-
New Caledonia (12)
-
-
-
Pacific Ocean
-
New Caledonia Basin (1)
-
South Pacific
-
Southwest Pacific
-
Lord Howe Rise (1)
-
Norfolk Ridge (3)
-
Tasman Sea
-
Challenger Plateau (1)
-
-
-
-
West Pacific
-
Southwest Pacific
-
Lord Howe Rise (1)
-
Norfolk Ridge (3)
-
Tasman Sea
-
Challenger Plateau (1)
-
-
-
-
-
West Pacific Ocean Islands
-
Loyalty Islands (4)
-
-
Zealandia (4)
-
-
commodities
-
geothermal energy (1)
-
metal ores
-
chromite ores (2)
-
cobalt ores (2)
-
copper ores (1)
-
gold ores (1)
-
nickel ores (3)
-
platinum ores (1)
-
-
mineral deposits, genesis (3)
-
mineral resources (3)
-
nonmetal deposits (1)
-
petroleum (1)
-
-
elements, isotopes
-
isotope ratios (1)
-
isotopes
-
radioactive isotopes
-
Sm-147/Nd-144 (1)
-
-
stable isotopes
-
Sm-147/Nd-144 (1)
-
-
-
metals
-
platinum group
-
platinum ores (1)
-
-
rare earths
-
neodymium
-
Sm-147/Nd-144 (1)
-
-
samarium
-
Sm-147/Nd-144 (1)
-
-
-
-
-
geochronology methods
-
Ar/Ar (1)
-
paleomagnetism (1)
-
U/Pb (4)
-
-
geologic age
-
Cenozoic
-
Quaternary
-
Holocene (1)
-
Pleistocene (1)
-
-
Tertiary
-
Neogene
-
Miocene
-
middle Miocene (1)
-
-
-
Paleogene
-
Eocene (3)
-
Oligocene
-
upper Oligocene (1)
-
-
Paleocene
-
upper Paleocene (1)
-
-
-
-
-
Mesozoic
-
Cretaceous
-
Lower Cretaceous (1)
-
Upper Cretaceous (4)
-
-
Jurassic (1)
-
-
Paleozoic
-
Carboniferous
-
Upper Carboniferous (1)
-
-
Permian
-
Upper Permian (1)
-
-
-
Phanerozoic (1)
-
-
igneous rocks
-
igneous rocks
-
plutonic rocks
-
granites (1)
-
ultramafics
-
peridotites
-
lherzolite (1)
-
-
-
-
volcanic rocks
-
adakites (1)
-
andesites
-
boninite (2)
-
-
basalts
-
tholeiite (1)
-
-
dacites (1)
-
pyroclastics
-
tuff (1)
-
-
rhyolites (1)
-
-
-
ophiolite (3)
-
-
metamorphic rocks
-
metamorphic rocks
-
eclogite (1)
-
schists
-
blueschist (1)
-
-
-
ophiolite (3)
-
turbidite (1)
-
-
minerals
-
silicates
-
orthosilicates
-
nesosilicates
-
zircon group
-
zircon (3)
-
-
-
-
-
-
Primary terms
-
absolute age (3)
-
biogeography (1)
-
Cenozoic
-
Quaternary
-
Holocene (1)
-
Pleistocene (1)
-
-
Tertiary
-
Neogene
-
Miocene
-
middle Miocene (1)
-
-
-
Paleogene
-
Eocene (3)
-
Oligocene
-
upper Oligocene (1)
-
-
Paleocene
-
upper Paleocene (1)
-
-
-
-
-
continental drift (1)
-
crust (1)
-
Deep Sea Drilling Project
-
IPOD
-
Leg 90
-
DSDP Site 593 (1)
-
-
-
Leg 21
-
DSDP Site 207 (1)
-
-
-
diagenesis (1)
-
economic geology (1)
-
geochemistry (1)
-
geothermal energy (1)
-
igneous rocks
-
plutonic rocks
-
granites (1)
-
ultramafics
-
peridotites
-
lherzolite (1)
-
-
-
-
volcanic rocks
-
adakites (1)
-
andesites
-
boninite (2)
-
-
basalts
-
tholeiite (1)
-
-
dacites (1)
-
pyroclastics
-
tuff (1)
-
-
rhyolites (1)
-
-
-
inclusions (1)
-
intrusions (2)
-
isotopes
-
radioactive isotopes
-
Sm-147/Nd-144 (1)
-
-
stable isotopes
-
Sm-147/Nd-144 (1)
-
-
-
lava (1)
-
magmas (2)
-
mantle (1)
-
maps (1)
-
Mesozoic
-
Cretaceous
-
Lower Cretaceous (1)
-
Upper Cretaceous (4)
-
-
Jurassic (1)
-
-
metal ores
-
chromite ores (2)
-
cobalt ores (2)
-
copper ores (1)
-
gold ores (1)
-
nickel ores (3)
-
platinum ores (1)
-
-
metals
-
platinum group
-
platinum ores (1)
-
-
rare earths
-
neodymium
-
Sm-147/Nd-144 (1)
-
-
samarium
-
Sm-147/Nd-144 (1)
-
-
-
-
metamorphic rocks
-
eclogite (1)
-
schists
-
blueschist (1)
-
-
-
mineral deposits, genesis (3)
-
mineral resources (3)
-
nonmetal deposits (1)
-
ocean basins (1)
-
ocean floors (2)
-
Oceania
-
Melanesia
-
New Caledonia (12)
-
-
-
Pacific Ocean
-
New Caledonia Basin (1)
-
South Pacific
-
Southwest Pacific
-
Lord Howe Rise (1)
-
Norfolk Ridge (3)
-
Tasman Sea
-
Challenger Plateau (1)
-
-
-
-
West Pacific
-
Southwest Pacific
-
Lord Howe Rise (1)
-
Norfolk Ridge (3)
-
Tasman Sea
-
Challenger Plateau (1)
-
-
-
-
-
paleogeography (3)
-
paleomagnetism (1)
-
Paleozoic
-
Carboniferous
-
Upper Carboniferous (1)
-
-
Permian
-
Upper Permian (1)
-
-
-
petroleum (1)
-
Phanerozoic (1)
-
plate tectonics (10)
-
reefs (1)
-
sedimentary rocks
-
carbonate rocks
-
limestone
-
biosparite (1)
-
-
-
clastic rocks
-
conglomerate (1)
-
eolianite (1)
-
graywacke (1)
-
-
-
sedimentary structures
-
biogenic structures
-
bioturbation (1)
-
-
soft sediment deformation
-
olistostromes (1)
-
-
-
sedimentation (1)
-
soils (1)
-
tectonics (5)
-
West Pacific Ocean Islands
-
Loyalty Islands (4)
-
-
-
sedimentary rocks
-
calcrete (1)
-
sedimentary rocks
-
carbonate rocks
-
limestone
-
biosparite (1)
-
-
-
clastic rocks
-
conglomerate (1)
-
eolianite (1)
-
graywacke (1)
-
-
-
turbidite (1)
-
volcaniclastics (4)
-
-
sedimentary structures
-
sedimentary structures
-
biogenic structures
-
bioturbation (1)
-
-
soft sediment deformation
-
olistostromes (1)
-
-
-
-
sediments
-
turbidite (1)
-
volcaniclastics (4)
-
-
soils
-
soils (1)
-
Vertisols (1)
-
Chapter 1: Introduction to New Caledonia: geology, geodynamic evolution and mineral resources
Chapter 2: Geodynamics of the SW Pacific: a brief review and relations with New Caledonian geology
Abstract The SW Pacific region consists of a succession of ridges and basins that were created by the fragmentation of Gondwana and the evolution of subduction zones since Mesozoic times. This complex geodynamic evolution shaped the geology of New Caledonia, which lies in the northern part of the Zealandia continent. Alternative tectonic models have been postulated. Most models agree that New Caledonia was situated on an active plate margin of eastern Gondwana during the Mesozoic. Extension affected the region from the Late Cretaceous to the Paleocene and models for this period vary in the location and nature of the plate boundary between the Pacific and Australian plates. Eocene regional tectonic contraction included the obduction of a mantle-derived Peridotite Nappe in New Caledonia. In one class of model, this contractional phase was controlled by an east-dipping subduction zone into which the Norfolk Ridge jammed, whereas and in a second class of model this phase corresponds to the initiation of the west-dipping Tonga–Kermadec subduction zone. Neogene tectonics of the region near New Caledonia was dominated by the eastwards retreat of Tonga–Kermadec subduction, leading to the opening of a back-arc basin east of New Caledonia, and the initiation and southwestwards advance of the New Hebrides–Vanuatu subduction zone towards New Caledonia.
Chapter 3: Pre-Late Cretaceous basement terranes of the Gondwana active margin of New Caledonia
Abstract The basement under the Late Cretaceous unconformity in New Caledonia consists of three amalgamated terranes. They are all oceanic, arc-related and developed offshore from the eastern Gondwana active margin during periods of marginal basin development. Téremba Terrane is composed of deep sea Permian to Mesozoic arc-derived volcanic rocks and greywackes. The Koh–Central Terrane includes at its base an ophiolite with island arc tholeiites and boninites (Koh Ophiolite) of Late Carboniferous to Early Permian age overlain by a thick sequence of greywacke (Central Range Volcaniclastic Rocks) of Permian to Late Jurassic age. The Téremba Terrane and the Koh–Central Terrane may be part of the same forearc basin, with the rocks from the Koh–Central Terrane deposited in a deeper environment. The Boghen Terrane is a metamorphic complex composed of schists, broken formations and mafic–ultramafic mélange, derived from mixed terrigenous and volcanic sources. The overall fine grain size and laminar bedding suggest deep sea and more distal deposition than the other terranes. The maximum depositional ages from detrital zircons suggest deposition during the Early Jurassic to Early Cretaceous. The terrane is interpreted as a metamorphosed subduction complex that includes blueschist and greenschist facies metamorphic rocks exhumed through the Koh–Central Terrane. At a regional scale, the nature of these three pre-Late Cretaceous terranes confirms the existing palaeogeographical reconstructions, which locate New Caledonia outboard the ocean–continent subduction that surrounded Gondwana during the Paleozoic and Early Mesozoic. A detailed analysis of these terranes and their relationship with East Australian terranes of the same age shows that a marginal basin system probably existed between mainland Gondwana and proto-New Caledonia and closed before the Late Cretaceous. A tentative detailed reconstruction of this margin during the Carboniferous–Early Cretaceous period is proposed.
Chapter 4: Late Cretaceous to Eocene cover of New Caledonia: from rifting to convergence
Abstract In New Caledonia, the cover refers to the autochthonous Late Cretaceous to Paleogene sedimentary and volcanic formations unconformably overlying the basement rocks and underlying the allochthonous nappes. The first period of deposition, broadly from the Late Cretaceous to Paleocene ( c. 105–56 Ma) was controlled by extension and rifting. The second period, broadly the Eocene ( c. 56–34 Ma), was dominated by convergence and contraction. The Late Cretaceous part of the cover consists of synrift conglomerates and coal-bearing deposits with interlayered bimodal, subduction-related and intra-plate volcanic rocks. The post-rift deposits are deep water sedimentary rocks deposited under anoxic conditions with reduced terrigenous input. The Paleocene to Eocene formations, mainly carbonates, attest to profound palaeogeographical changes and a switch to a different geodynamic regime, linked to the onset of Eocene convergence. The Middle to Late Eocene formations are typically composed of turbidites and breccias. They were deposited in a typical flexural foreland basin context as an upwards-coarsening sequence topped by an olistostrome. They are associated with tectonic convergence and east-dipping subduction that led to the end-Eocene obduction of ophiolitic nappes. This two-fold evolution, extension then compression, can be integrated in the wider framework of the plate tectonic evolution of the SW Pacific.
Chapter 5: The Eocene Subduction–Obduction Complex of New Caledonia
Abstract Convergence and subduction started in the Late Paleocene, to the east of New Caledonia in the South Loyalty Basin/Loyalty Basin, leading to the formation of the Subduction–Obduction Complex of Grande Terre. Convergence during the Eocene consumed the oceanic South Loyalty Basin and the northeasternmost margin of Zealandia (the Norfolk Ridge). The attempted subduction of the Norfolk Ridge eventually led to the end-Eocene obduction. Intra-oceanic subduction started in the South Loyalty Basin, as indicated by high-temperature amphibolite (56 Ma), boninite and adakite series dykes (55–50 Ma) and changes in the sedimentation regime (55 Ma). The South Loyalty Basin and its margin were dragged to a maximum depth of 70 km, forming the high-pressure–low-temperature Pouébo Terrane and the Diahot–Panié Metamorphic Complex, before being exhumed at 38–34 Ma. The obduction complex was formed by the stacking from NE to SW of several allochthonous units over autochthonous Zealandia, including the Montagnes Blanches Nappe (Norfolk Ridge crust), the Poya Terrane (the crust of the South Loyalty Basin) and the Peridotite Nappe (the mantle lithosphere of the Loyalty Basin). A model of continental subduction accepted by most researchers is proposed and discussed. Offshore continuations and comparable units in Papua New Guinea and New Zealand are presented.
Abstract The Loyalty Ridge lies to the east and NE of the Norfolk Ridge. The three main Loyalty Islands (Maré, Lifou and Ouvéa) emerge from the ridge at the same latitude as Grande Terre. The islands are uniformly composed of carbonate deposits, except for Maré, where Middle Miocene intra-plate basalts and associated volcaniclastic rocks form restricted outcrops. Miocene rhodolith limestones constitute the bulk of the carbonate cover of the three islands. On Maré, these platform accumulations are locally topped by a dolomitic hardground, which, in turn, is covered by Pliocene–Pleistocene coral-bearing formations. These coral reef constructions are preserved as elevated rims over all three islands and define an atoll stage in their development. The Pleistocene–Holocene palaeoshoreline indicators include fringing bioconstructions and marine notches and record both eustatic sea-level changes and tectonic deformation. The ridge has been in the forebulge region in front of the active Vanuatu subduction zone since the Pliocene and each of the three islands has been uplifted and tilted to varying degrees. Offshore, the Loyalty Ridge continues northwards to the d'Entrecasteaux Zone and southwards to the Three Kings Ridge. Although typically volcanic, the nature of the deep Loyalty Ridge remains unknown.
Chapter 7: Post-obduction evolution of New Caledonia
Abstract The post-obduction formations of Grande Terre, New Caledonia, comprise igneous intrusions, regolith cover, and marine and terrestrial sedimentary rocks. Two restricted Late Oligocene granitoid bodies are intruded into the Peridotite Nappe and its substrate in the south of the island. Thick regolith cover developed over the Peridotite Nappe from the Late Oligocene or earlier. The Népoui Group comprises Late Oligocene–Early Miocene mixed marine carbonate and siliciclastic deposits. It mainly reworks the Peridotite Nappe and its regolith cover. Its development pattern is mainly controlled by tectonic uplift and subsidence. The Gwa N'Doro Formation on the eastern coast and the Fluvio-lacustrine Formation in the south are remnants of the Miocene–Present river network. Offshore, thick Oligocene to Neogene sedimentary successions are imaged by seismic surveys on the margins of Grande Terre, although these successions have not been drilled and remain undated. Several dredges have recovered shallow Miocene sedimentary rocks, indicating substantial Neogene subsidence. Quaternary formations are represented inland by aeolianite, vertisols and calcrete and offshore by the large barrier reef–lagoon complex, the onset of which is dated at c. 400 ka. This chapter discusses the different models proposed for the post-obduction evolution of Grand Terre.
Abstract New Caledonia is known as a global biodiversity hotspot. Like most Pacific islands, its modern biota is characterized by high levels of endemism and is notably lacking in some functional groups of biota. This is the result of its distinctive palaeobiogeographical history, which can be described in terms of three major episodes relating to Gondwana, Zealandia and New Caledonia. The geological record, the fossil record and the modern biota of the archipelago are all reviewed here. The geological record shows that the main island, Grande Terre, was submerged between 75 and 60 Ma. There is a 9 myr interval without any geological record between 34 and 25 Ma, immediately after the obduction of the Peridotite Nappe. Grande Terre may or may not have been submerged during this 9 myr interval. The ages given by molecular biology, independent of any geological calibration points, form a continuous spectrum from 60 Ma up to the present day. The derived lineage ages from molecular phylogenies all post-date 60 Ma, supporting the idea of the continuous availability of terrestrial environments since 60 Ma. Of the three common scenarios for the origin of the New Caledonia biota, long-distance dispersal is the most plausible, rather than vicariance or dispersal over short distances.
Chapter 9: Mineral resources and prospectivity of non-ultramafic rocks of New Caledonia
Abstract The mineral resources of the non-ultramafic rocks of New Caledonia and its Exclusive Economic Zone can be classified according to their host rocks. The metallic mineral resources are essentially associated with volcanic and magmatic activity. Non-economic volcanogenic massive sulfide deposits with Cu and Au are located in the Late Carboniferous Koh Ophiolite and in the Late Cretaceous Poya Terrane. Base metals, Au and Ag of the sedimentary–exhalative type are present in the metamorphic Diahot-Panié Metamorphic Complex, associated with syn-rift volcanism. An Au–Sb metallogenic province is associated with the post-obduction Late Oligocene granitoids and co-genetic hydrothermal silica–carbonate (listwanite) zones in the Peridotite Nappe; Au is disseminated in the granites and Sb occurs as lodes in the silica–carbonate. Among the non-metallic mineral resources, barite, gypsum, magnesite, phosphate, clays, dimension stones, limestone for use as cement and as a neutralizer, and aggregates are all present. Gemstones such as jade and chrysoprase are only used locally. Late Cretaceous coal, which was briefly exploited in the past, is now considered to be a source rock for an offshore potential oil and gas system. Petroleum prospectivity is currently focused on the Fairway Basin. Several low-enthalpy thermo-mineral springs with a weak geothermal energy potential are known on Grande Terre.
Chapter 10: Mineral resources and prospectivity of the ultramafic rocks of New Caledonia
Abstract The main metallic mineral resources of New Caledonia are hosted by the obducted Peridotite Nappe. Ni, Co, Cr and the Pt group elements (PGEs) are specific to this ultramafic terrane. Cr, as podiform chromitite in the uppermost mantle, is the only hypogene metal mined economically in the past. The largest chromitite deposits are located in the lherzolitic Tiébaghi Massif. Supergene Ni and Co deposits are concentrated by the tropical climate that has prevailed since the Miocene. New Caledonian lateritic Ni deposits account for 10% of the global Ni resources. Hydrous Mg silicate and oxide types coexist in a single deposit. A local genetic model based on geomorphological evolution is proposed. Sc is a prospective resource associated with these supergene deposits. The PGEs are a prospective resource associated with chromite, with potential in the hypogene, supergene and fluvio-littoral domains. Pt and Pd are the most significant elements. The transition zone between the upper mantle and crustal cumulates constitutes a regional Pt–Pd-enriched horizon. The concentrations are related to small disseminated chromite lenses in a pyroxene-rich lithology. The PGEs are concentrated in weathering profiles. The value of chromite-rich sands as placers or sand beach deposits might be enhanced by the occurrences of PGEs.
Back Matter
Front Matter
Table of Contents
This memoir summarizes current knowledge on the geology of New Caledonia, its geodynamic evolution and mineral resources, based on published and unpublished information. It comprises ten research papers, each addressing a particular geological assemblage or topic. After an introductory chapter and a review of the published geodynamic models of evolution of the SW Pacific, Chapters 3-5 focus on the main geological assemblages of Grande Terre: the pre-Late Cretaceous basement terranes, the Late Cretaceous to Eocene cover, and the Eocene Subduction-Obduction Complex, one of the largest and best-preserved in the world. Chapter 6 is devoted to the Loyalty Islands and Ridge. Chapter 7 deals with the mostly terrestrial post-obduction units, including regolith. Chapter 8 deals with palaeobiogeography and discusses plausible scenarios of biotic evolution. Chapters 9 and 10 provide a comprehensive review of New Caledonia's mineral resources. The volume will be of interest to stratigraphers, sedimentologists, marine geologists, palaeontologists, palaeogeographers, igneous and metamorphic petrologists, geochemists, geochronologists, and specialists in tectonics, geodynamic evolution, regoliths, ophiolites and economic geology.
Regional volcanism of northern Zealandia: post-Gondwana break-up magmatism on an extended, submerged continent
Abstract: Volcanism of Late Cretaceous–Miocene age is more widespread across the Zealandia continent than previously recognized. New age and geochemical information from widely spaced northern Zealandia seafloor samples can be related to three volcanotectonic regimes: (1) age-progressive, hotspot-style, low-K, alkali-basalt-dominated volcanism in the Lord Howe Seamount Chain. The northern end of the chain ( c. 28 Ma) is spatially and temporally linked to the 40–28 Ma South Rennell Trough spreading centre. (2) Subalkaline, intermediate to silicic, medium-K to shoshonitic lavas of >78–42 Ma age within and near to the New Caledonia Basin. These lavas indicate that the basin and the adjacent Fairway Ridge are underlain by continental rather than oceanic crust, and are a record of Late Cretaceous–Eocene intracontinental rifting or, in some cases, speculatively subduction. (3) Spatially scattered, non-hotspot, alkali basalts of 30–18 Ma age from Loyalty Ridge, Lord Howe Rise, Aotea Basin and Reinga Basin. These lavas are part of a more extensive suite of Zealandia-wide, 97–0 Ma intraplate volcanics. Ages of northern Zealandia alkali basalts confirm that a late Cenozoic pulse of intraplate volcanism erupted across both northern and southern Zealandia. Collectively, the three groups of volcanic rocks emphasize the important role of magmatism in the geology of northern Zealandia, both during and after Gondwana break-up. There is no compelling evidence in our dataset for Late Cretaceous–Paleocene subduction beneath northern Zealandia. Supplementary material: Trace element compositions of zircons and whole-rock chemical compositions obtained by previous studies are available at: https://doi.org/10.6084/m9.figshare.c.3850975