- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
GeoRef Subject
-
all geography including DSDP/ODP Sites and Legs
-
Altiplano (2)
-
Meseta (1)
-
Puna (1)
-
South America
-
Andes
-
Central Andes (1)
-
-
Bolivia
-
Oruro Bolivia (1)
-
Potosi Bolivia (1)
-
-
-
-
commodities
-
metal ores
-
lead ores (1)
-
silver ores (1)
-
tin ores (1)
-
zinc ores (1)
-
-
mineral deposits, genesis (1)
-
-
elements, isotopes
-
isotopes (1)
-
large-ion lithophile elements (1)
-
metals
-
hafnium (1)
-
niobium (1)
-
platinum group
-
palladium (1)
-
-
rare earths
-
lanthanum (1)
-
-
tantalum (1)
-
titanium (1)
-
-
-
geochronology methods
-
Ar/Ar (1)
-
K/Ar (1)
-
U/Pb (1)
-
-
geologic age
-
Cenozoic
-
Quaternary
-
Pleistocene
-
upper Pleistocene (1)
-
-
-
Tertiary
-
Neogene
-
Miocene (1)
-
Pliocene (1)
-
-
-
-
Precambrian
-
upper Precambrian
-
Proterozoic
-
Neoproterozoic (1)
-
-
-
-
-
igneous rocks
-
igneous rocks
-
volcanic rocks
-
basalts
-
shoshonite (1)
-
-
pyroclastics
-
ash-flow tuff (1)
-
ignimbrite (1)
-
-
-
-
-
minerals
-
silicates
-
orthosilicates
-
nesosilicates
-
zircon group
-
zircon (1)
-
-
-
-
-
-
Primary terms
-
absolute age (3)
-
Cenozoic
-
Quaternary
-
Pleistocene
-
upper Pleistocene (1)
-
-
-
Tertiary
-
Neogene
-
Miocene (1)
-
Pliocene (1)
-
-
-
-
crust (1)
-
igneous rocks
-
volcanic rocks
-
basalts
-
shoshonite (1)
-
-
pyroclastics
-
ash-flow tuff (1)
-
ignimbrite (1)
-
-
-
-
inclusions
-
fluid inclusions (1)
-
-
intrusions (1)
-
isotopes (1)
-
lava (1)
-
magmas (1)
-
mantle (1)
-
metal ores
-
lead ores (1)
-
silver ores (1)
-
tin ores (1)
-
zinc ores (1)
-
-
metals
-
hafnium (1)
-
niobium (1)
-
platinum group
-
palladium (1)
-
-
rare earths
-
lanthanum (1)
-
-
tantalum (1)
-
titanium (1)
-
-
mineral deposits, genesis (1)
-
orogeny (1)
-
plate tectonics (1)
-
Precambrian
-
upper Precambrian
-
Proterozoic
-
Neoproterozoic (1)
-
-
-
-
sedimentary rocks (1)
-
South America
-
Andes
-
Central Andes (1)
-
-
Bolivia
-
Oruro Bolivia (1)
-
Potosi Bolivia (1)
-
-
-
volcanology (1)
-
-
sedimentary rocks
-
sedimentary rocks (1)
-
The missing link of Rodinia breakup in western South America: A petrographical, geochemical, and zircon Pb-Hf isotope study of the volcanosedimentary Chilla beds (Altiplano, Bolivia)
Geochemistry and 40 Ar/ 39 Ar geochronology of lavas from Tunupa volcano, Bolivia: Implications for plateau volcanism in the central Andean Plateau
Large ignimbrite eruptions and volcano-tectonic depressions in the Central Andes: A thermomechanical perspective
Abstract The Neogene ignimbrite flare-up of the Altiplano Puna Volcanic Complex (APVC) of the Central Andes produced one of the best-preserved large silicic volcanic fields on Earth. At least 15 000 km 3 of magma erupted as regional-scale ignimbrites between 10 and 1 Ma, from large complex calderas that are typical volcano-tectonic depressions (VTD). Simple Valles-type calderas are absent. Integration of field, geochronological, petrological, geochemical and geophysical data from the APVC within the geodynamic context of the Central Andes suggests a scenario where elevated mantle power input, subsequent crustal melting and assimilation, and development of a crustal-scale intrusive complex lead to the development of APVC. These processes lead to thermal softening of the sub-APVC crust and eventual mechanical failure of the roofs above batholith-scale magma chambers to trigger the massive eruptions. The APVC ignimbrite flare-up and the resulting VTDs are thus the result of the time-integrated impact of intrusion on the mechanical strength of the crust, and should be considered tectonomagmatic phenomena, rather than purely volcanic features. This model requires a change in paradigm about how the largest explosive eruptions may operate.