- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
GeoRef Subject
-
all geography including DSDP/ODP Sites and Legs
-
Europe
-
Western Europe
-
Belgium (3)
-
-
-
-
elements, isotopes
-
carbon
-
organic carbon (1)
-
-
-
geologic age
-
Cenozoic
-
Tertiary
-
Paleogene
-
Oligocene
-
Boom Clay (3)
-
-
-
-
-
-
minerals
-
silicates
-
sheet silicates
-
clay minerals
-
smectite (1)
-
-
illite (1)
-
-
-
-
Primary terms
-
carbon
-
organic carbon (1)
-
-
Cenozoic
-
Tertiary
-
Paleogene
-
Oligocene
-
Boom Clay (3)
-
-
-
-
-
clay mineralogy (1)
-
Europe
-
Western Europe
-
Belgium (3)
-
-
-
geochemistry (2)
-
sediments
-
clastic sediments
-
clay (2)
-
-
-
standard materials (1)
-
waste disposal (3)
-
-
sediments
-
sediments
-
clastic sediments
-
clay (2)
-
-
-
Abstract The option of disposing of radioactive waste deep underground has been studied in Belgium by SCK CEN since the 1970s. This led in 1980 to the construction of the HADES underground research laboratory (URL) in a clay formation, the Boom Clay, at a depth of 225 m under the premises of SCK CEN in Mol. Over the last four decades, many in situ experiments have been conducted in the HADES URL. These have made a significant contribution to ONDRAF/NIRAS’ research, development and demonstration (RD&D) efforts demonstrating that disposal in Boom Clay can offer a safe solution for the long-term management of high-level and/or long-lived radioactive waste. Moreover, the construction of the HADES URL itself is a demonstration that shafts and galleries can be constructed in clay at that depth. However, the HADES URL did not only contribute to the Belgian programme. Many of the in situ experiments have been part of international research and the laboratory has provided valuable input to the research programmes of other URLs, such as the Meuse/Haute-Marne URL in France and the Mont Terri rock laboratory in Switzerland. This paper gives a brief overview of the main contributions of the HADES URL to both national and international research into geological disposal.
The role of the HADES URL in better understanding of the Boom Clay pore water geochemistry
Abstract When assessing a rock formation for its suitability as a potential host rock for the disposal of radioactive waste, knowledge about its pore water chemical composition is essential. When the HADES underground research laboratory became operational in the early 1980s, it offered the possibility of extracting pore water from Boom Clay. At the time, however, there was almost no experience of sampling pore water from deep clay formations. The low hydraulic conductivity of clays makes it difficult to extract pore water and the sampling process itself can induce changes in the observed chemical characteristics due to oxidation and re-equilibration with the ambient air. In the past decades, significant progress has been made in the techniques and protocols to sample and monitor pore water. The use of nitrogen instead of compressed air to drill boreholes and installing piezometers limited the disturbances induced by oxidation of the clay. Furthermore, an advanced system was developed to simultaneously sample pore water and dissolved gases and measure some key geochemical parameters such as pH, pCO 2 and redox potential under in situ conditions. This has resulted in a more reliable characterization of the Boom Clay pore water and a better understanding of perturbing processes such as oxidation.