- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
GeoRef Subject
-
all geography including DSDP/ODP Sites and Legs
-
Africa
-
North Africa
-
Atlas Mountains
-
Moroccan Atlas Mountains
-
Anti-Atlas (1)
-
High Atlas (1)
-
-
-
Morocco
-
Moroccan Atlas Mountains
-
Anti-Atlas (1)
-
High Atlas (1)
-
-
-
-
-
South America
-
Andes
-
Eastern Cordillera (1)
-
-
Argentina
-
Salta Argentina (1)
-
-
-
-
fossils
-
Invertebrata
-
Brachiopoda
-
Inarticulata (1)
-
-
-
-
geologic age
-
Paleozoic
-
Cambrian
-
Middle Cambrian (1)
-
Upper Cambrian (1)
-
-
-
-
Primary terms
-
Africa
-
North Africa
-
Atlas Mountains
-
Moroccan Atlas Mountains
-
Anti-Atlas (1)
-
High Atlas (1)
-
-
-
Morocco
-
Moroccan Atlas Mountains
-
Anti-Atlas (1)
-
High Atlas (1)
-
-
-
-
-
biogeography (1)
-
Invertebrata
-
Brachiopoda
-
Inarticulata (1)
-
-
-
paleoecology (1)
-
Paleozoic
-
Cambrian
-
Middle Cambrian (1)
-
Upper Cambrian (1)
-
-
-
South America
-
Andes
-
Eastern Cordillera (1)
-
-
Argentina
-
Salta Argentina (1)
-
-
-
Ordovician of the Bohemian Massif
Abstract The lower Paleozoic succession of central Europe exposed in the Bohemian Massif is a classic area of geology with a long-standing tradition of research dating back to the eighteenth century. The Ordovician rocks form parts of sections in several units that sit on the Cadomian basement. These sedimentary and volcano-sedimentary fills of partial depressions in the basement are relics of the system of rift basins in the Gondwanan margin reflecting the rifting of the Rheic Ocean. The Ordovician sections are related to the subsidence period during the extensional regime accompanied by volcanism. They are underlain by Neoproterozoic or Cambrian rocks and continue up usually without breaks. After closure of the Rheic Ocean owing to the Gondwana–Laurussia collision, the Ordovician successions were incorporated into the Variscan Orogen belt and preserved in denudation relics such as the Bohemian Massif and its units. Ordovician strata with Gondwanan shelf affinities can be traced along the Variscans from Spain to central Europe, and are reflected in the regional stratigraphic scale based mainly on the succession in the Prague Basin. The Ordovician fill of this accumulation centre, together with relics of another preserved in the Schwarzburg Anticline, represents the main exposures in the Bohemian Massif. The individual features of the Ordovician successions, such as facies developments, fossil associations and volcanism, make them model areas both for understanding the palaeogeographic and geotectonic evolution of the peri-Gondwanan margin and a stratigraphic standard for a cool-water regime.
Lingulate brachiopods from the Lampazar Formation (late Cambrian) of the Cordillera Oriental of northwestern Argentina
Abstract Central Europe consists of a complex mosaic of more or less independent terranes with varying tectonometamorphic histories, usually also of different lithological compositions and protolith, and thus it is reasonable to suppose that the majority of these blocks have experienced somewhat different palaeogeographical evolution. The present terrane juxtaposition has been interpreted in general as a result of the Variscan collision of peri-Gondwanan and peri-Baltic derived terranes, with Gondwana on one side and Baltica and/or Laurentia on the other side. However, reconstruction of the pre-Variscan development and mutual palaeogeographical relationships remains a major challenge of interpretation.