- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
GeoRef Subject
-
all geography including DSDP/ODP Sites and Legs
-
United States
-
Washington (1)
-
Yakima fold belt (1)
-
-
-
geologic age
-
Cenozoic
-
Tertiary
-
Neogene
-
Miocene
-
Columbia River Basalt Group (1)
-
Grande Ronde Basalt (1)
-
-
-
-
-
-
Primary terms
-
Cenozoic
-
Tertiary
-
Neogene
-
Miocene
-
Columbia River Basalt Group (1)
-
Grande Ronde Basalt (1)
-
-
-
-
-
deformation (1)
-
faults (1)
-
folds (1)
-
United States
-
Washington (1)
-
Yakima fold belt (1)
-
-
The Lewiston Structure is located in southeastern Washington and west-central Idaho and is a generally east-west–trending (~075°), asymmetric, noncylindrical anticline in the Columbia River Basalt Group that transfers displacement into the Limekiln fault system to the southeast and the Silcott fault system to the southwest. A serial cross-section analysis and three-dimensional (3-D) construction of this structure show how the fold varies along its trend and shed light on the deformational history of the Lewiston Basin. Construction of the fold’s 3-D form shows that the fold’s wavelength increases and amplitude decreases near its eastern and western boundaries. Balanced cross sections show ~5% shortening across the structure, which is consistent with the Yakima Fold Belt. An angular unconformity below the Grande Ronde Basalt N1 magnetostratigraphic unit, in addition to a variation of N1 unit thickness across the structure, suggests that the fold was forming before N1 time. Analysis of structural data using the Gauss method for heterogeneous fault-slip data indicates north-south (~350°) shortening prior to and after N1 emplacement. The presence of a reverse fault on the southern limb of the Lewiston Structure is controversial. This fault crops out to the east of the field area where Grande Ronde Basalt magnetostratigraphic unit R2 is thrust over Pliocene(?) gravels. However, better control on unit thicknesses and map contacts rules out an exposed reverse fault on the southern limb of the fold west of the Washington-Idaho border, suggesting the fault either dies out or becomes blind.