- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
GeoRef Subject
-
all geography including DSDP/ODP Sites and Legs
-
Altiplano (1)
-
Caribbean region
-
West Indies
-
Antilles
-
Greater Antilles
-
Cuba (1)
-
-
-
-
-
Central Valley (1)
-
South America
-
Andes
-
Central Andes (1)
-
Western Cordillera (2)
-
-
Argentina
-
Santa Cruz Argentina
-
Deseado Massif (1)
-
-
-
Chile
-
Antofagasta Chile
-
Chuquicamata Chile (2)
-
-
Atacama Desert (4)
-
Los Lagos Chile (1)
-
-
Patagonia (2)
-
-
United States
-
Nevada (1)
-
-
-
commodities
-
metal ores
-
base metals (3)
-
chromite ores (1)
-
copper ores (7)
-
gold ores (3)
-
iron ores (7)
-
manganese ores (1)
-
molybdenum ores (1)
-
silver ores (2)
-
-
mineral deposits, genesis (15)
-
mineral exploration (2)
-
mineral resources (2)
-
nitrate deposits (3)
-
phosphate deposits (3)
-
strategic minerals (1)
-
-
elements, isotopes
-
carbon
-
C-14 (1)
-
-
halogens
-
iodine
-
I-129 (2)
-
-
-
hydrogen
-
D/H (1)
-
-
isotope ratios (6)
-
isotopes
-
radioactive isotopes
-
C-14 (1)
-
I-129 (2)
-
Re-187/Os-188 (1)
-
-
stable isotopes
-
Cr-53/Cr-52 (1)
-
D/H (1)
-
Fe-56/Fe-54 (3)
-
N-15/N-14 (1)
-
O-17/O-16 (1)
-
O-18/O-16 (3)
-
Os-188/Os-187 (1)
-
Re-187/Os-188 (1)
-
-
-
metals
-
antimony (1)
-
arsenic (2)
-
cadmium (1)
-
chromium
-
Cr-53/Cr-52 (1)
-
-
gold (2)
-
iron
-
Fe-56/Fe-54 (3)
-
-
mercury (1)
-
platinum group
-
iridium (1)
-
osmium
-
Os-188/Os-187 (1)
-
Re-187/Os-188 (1)
-
-
platinum (1)
-
ruthenium (1)
-
-
precious metals (2)
-
rare earths (1)
-
rhenium
-
Re-187/Os-188 (1)
-
-
silver (1)
-
thallium (1)
-
-
nitrogen
-
N-15/N-14 (1)
-
-
oxygen
-
O-17/O-16 (1)
-
O-18/O-16 (3)
-
-
phosphorus (1)
-
selenium (1)
-
tellurium (1)
-
-
geochronology methods
-
(U-Th)/He (1)
-
Ar/Ar (2)
-
Re/Os (1)
-
Th/U (1)
-
U/Pb (1)
-
uranium disequilibrium (1)
-
-
geologic age
-
Cenozoic
-
Quaternary
-
Holocene (1)
-
Pleistocene (4)
-
-
Tertiary
-
Neogene
-
Pliocene (2)
-
-
Paleogene
-
Eocene
-
upper Eocene (1)
-
-
-
-
-
Mesozoic
-
Cretaceous (1)
-
Jurassic
-
Upper Jurassic (2)
-
-
-
-
igneous rocks
-
igneous rocks
-
volcanic rocks
-
basalts (1)
-
pyroclastics
-
ignimbrite (1)
-
-
-
-
volcanic ash (1)
-
-
metamorphic rocks
-
metamorphic rocks
-
amphibolites (1)
-
metaigneous rocks
-
serpentinite (1)
-
-
metasomatic rocks
-
serpentinite (1)
-
-
schists
-
blueschist (1)
-
-
-
-
minerals
-
halides
-
chlorides
-
atacamite (1)
-
-
fluorides
-
clinohumite (1)
-
-
-
oxides
-
chromite (1)
-
hematite (1)
-
iron oxides (4)
-
magnetite (6)
-
manganese oxides (1)
-
titanomagnetite (1)
-
-
phosphates
-
apatite (4)
-
-
silicates
-
framework silicates
-
silica minerals
-
cristobalite (1)
-
-
-
orthosilicates
-
nesosilicates
-
chondrodite (1)
-
clinohumite (1)
-
-
-
sheet silicates
-
serpentine group
-
antigorite (1)
-
-
-
-
sulfides
-
bornite (1)
-
chalcopyrite (2)
-
copper sulfides (1)
-
iron sulfides (1)
-
millerite (1)
-
pentlandite (1)
-
pyrite (6)
-
-
sulfosalts (1)
-
-
Primary terms
-
absolute age (4)
-
atmosphere (1)
-
carbon
-
C-14 (1)
-
-
Caribbean region
-
West Indies
-
Antilles
-
Greater Antilles
-
Cuba (1)
-
-
-
-
-
Cenozoic
-
Quaternary
-
Holocene (1)
-
Pleistocene (4)
-
-
Tertiary
-
Neogene
-
Pliocene (2)
-
-
Paleogene
-
Eocene
-
upper Eocene (1)
-
-
-
-
-
climate change (2)
-
crystal growth (1)
-
crystal structure (1)
-
data processing (1)
-
faults (1)
-
geochemistry (4)
-
ground water (3)
-
hydrogen
-
D/H (1)
-
-
igneous rocks
-
volcanic rocks
-
basalts (1)
-
pyroclastics
-
ignimbrite (1)
-
-
-
-
inclusions
-
fluid inclusions (1)
-
-
isotopes
-
radioactive isotopes
-
C-14 (1)
-
I-129 (2)
-
Re-187/Os-188 (1)
-
-
stable isotopes
-
Cr-53/Cr-52 (1)
-
D/H (1)
-
Fe-56/Fe-54 (3)
-
N-15/N-14 (1)
-
O-17/O-16 (1)
-
O-18/O-16 (3)
-
Os-188/Os-187 (1)
-
Re-187/Os-188 (1)
-
-
-
lava (1)
-
magmas (3)
-
mantle (1)
-
Mesozoic
-
Cretaceous (1)
-
Jurassic
-
Upper Jurassic (2)
-
-
-
metal ores
-
base metals (3)
-
chromite ores (1)
-
copper ores (7)
-
gold ores (3)
-
iron ores (7)
-
manganese ores (1)
-
molybdenum ores (1)
-
silver ores (2)
-
-
metals
-
antimony (1)
-
arsenic (2)
-
cadmium (1)
-
chromium
-
Cr-53/Cr-52 (1)
-
-
gold (2)
-
iron
-
Fe-56/Fe-54 (3)
-
-
mercury (1)
-
platinum group
-
iridium (1)
-
osmium
-
Os-188/Os-187 (1)
-
Re-187/Os-188 (1)
-
-
platinum (1)
-
ruthenium (1)
-
-
precious metals (2)
-
rare earths (1)
-
rhenium
-
Re-187/Os-188 (1)
-
-
silver (1)
-
thallium (1)
-
-
metamorphic rocks
-
amphibolites (1)
-
metaigneous rocks
-
serpentinite (1)
-
-
metasomatic rocks
-
serpentinite (1)
-
-
schists
-
blueschist (1)
-
-
-
metamorphism (1)
-
metasomatism (6)
-
mineral deposits, genesis (15)
-
mineral exploration (2)
-
mineral resources (2)
-
nitrate deposits (3)
-
nitrogen
-
N-15/N-14 (1)
-
-
oxygen
-
O-17/O-16 (1)
-
O-18/O-16 (3)
-
-
paleoclimatology (2)
-
phosphate deposits (3)
-
phosphorus (1)
-
pollution (1)
-
sedimentary rocks
-
chemically precipitated rocks
-
siliceous sinter (1)
-
-
-
sediments
-
clastic sediments (1)
-
-
selenium (1)
-
soils (1)
-
South America
-
Andes
-
Central Andes (1)
-
Western Cordillera (2)
-
-
Argentina
-
Santa Cruz Argentina
-
Deseado Massif (1)
-
-
-
Chile
-
Antofagasta Chile
-
Chuquicamata Chile (2)
-
-
Atacama Desert (4)
-
Los Lagos Chile (1)
-
-
Patagonia (2)
-
-
tectonics (4)
-
tellurium (1)
-
thermal waters (1)
-
United States
-
Nevada (1)
-
-
weathering (2)
-
-
sedimentary rocks
-
sedimentary rocks
-
chemically precipitated rocks
-
siliceous sinter (1)
-
-
-
-
sediments
-
sediments
-
clastic sediments (1)
-
-
-
soils
-
soils (1)
-
ORIGIN OF VOLCANIC-HOSTED MAGNETITE AT THE LAGUNA DEL MAULE COMPLEX, CHILE: A NEW EXAMPLE OF ANDEAN IRON OXIDE-APATITE MINERALIZATION
Osmium isotopes fingerprint mantle controls on the genesis of an epithermal gold province
Triple Oxygen ( δ 18 O, Δ 17 O), Hydrogen ( δ 2 H), and Iron ( δ 56 Fe) Stable Isotope Signatures Indicate a Silicate Magma Source and Magmatic-Hydrothermal Genesis for Magnetite Orebodies at El Laco, Chile
The Geochemistry of Magnetite and Apatite from the El Laco Iron Oxide-Apatite Deposit, Chile: Implications for Ore Genesis
Occurrence and Distribution of Silver in the World-Class Río Blanco Porphyry Cu-Mo Deposit, Central Chile
In-situ iron isotope analyses reveal igneous and magmatic-hydrothermal growth of magnetite at the Los Colorados Kiruna-type iron oxide-apatite deposit, Chile
Environmental controls on silica sinter formation revealed by radiocarbon dating
Nanoscale partitioning of Ru, Ir, and Pt in base-metal sulfides from the Caridad chromite deposit, Cuba
Nitrate Deposits of the Atacama Desert: A Marker of Long-Term Hyperaridity
The Central Andes: Elements of an Extreme Land
Abstract Iron oxide copper-gold (IOCG) and Kiruna-type iron oxide-apatite (IOA) deposits are commonly spatially and temporally associated with one another, and with coeval magmatism. Here, we use trace element concentrations in magnetite and pyrite, Fe and O stable isotope abundances of magnetite and hematite, H isotopes of magnetite and actinolite, and Re-Os systematics of magnetite from the Los Colorados Kiruna-type IOA deposit in the Chilean iron belt to develop a new genetic model that explains IOCG and IOA deposits as a continuum produced by a combination of igneous and magmatic-hydrothermal processes. The concentrations of [Al + Mn] and [Ti + V] are highest in magnetite cores and decrease systematically from core to rim, consistent with growth of magnetite cores from a silicate melt, and rims from a cooling magmatic-hydrothermal fluid. Almost all bulk δ 1 8 O values in magnetite are within the range of 0 to 5‰, and bulk δ 56 Fe for magnetite are within the range 0 to 0.8‰ of Fe isotopes, both of which indicate a magmatic source for O and Fe. The values of δ 1 8 O and δ D for actinolite, which is paragenetically equivalent to magnetite, are, respectively, 6.46 ± 0.56 and −59.3 ± 1.7‰, indicative of a mantle source. Pyrite grains consistently yield Co/Ni ratios that exceed unity, and imply precipitation of pyrite from an ore fluid evolved from an intermediate to mafic magma. The calculated initial 187 Os/ 188 Os ratio (Os i ) for magnetite from Los Colorados is 1.2, overlapping Os i values for Chilean porphyry-Cu deposits, and consistent with an origin from juvenile magma. Together, the data are consistent with a geologic model wherein (1) magnetite microlites crystallize as a near-liquidus phase from an intermediate to mafic silicate melt; (2) magnetite microlites serve as nucleation sites for fluid bubbles and promote volatile saturation of the melt; (3) the volatile phase coalesces and encapsulates magnetite microlites to form a magnetite-fluid suspension; (4) the suspension scavenges Fe, Cu, Au, S, Cl, P, and rare earth elements (REE) from the melt; (5) the suspension ascends from the host magma during regional extension; (6) as the suspension ascends, originally igneous magnetite microlites grow larger by sourcing Fe from the cooling magmatic-hydrothermal fluid; (7) in deep-seated crustal faults, magnetite crystals are deposited to form a Kiruna-type IOA deposit due to decompression of the magnetite-fluid suspension; and (8) the further ascending fluid transports Fe, Cu, Au, and S to shallower levels or lateral distal zones of the system where hematite, magnetite, and sulfides precipitate to form IOCG deposits. The model explains the globally observed temporal and spatial relationship between magmatism and IOA and IOCG deposits, and provides a valuable conceptual framework to define exploration strategies.