- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
GeoRef Subject
-
all geography including DSDP/ODP Sites and Legs
-
Africa
-
North Africa
-
Morocco (1)
-
Western Sahara (1)
-
-
West Africa
-
Mauritania (1)
-
Senegal
-
Dakar Senegal (1)
-
-
-
-
Atlantic Ocean
-
East Atlantic (1)
-
North Atlantic (1)
-
-
Atlantic Ocean Islands
-
Canary Islands (1)
-
-
Cap Blanc (1)
-
-
Primary terms
-
Africa
-
North Africa
-
Morocco (1)
-
Western Sahara (1)
-
-
West Africa
-
Mauritania (1)
-
Senegal
-
Dakar Senegal (1)
-
-
-
-
Atlantic Ocean
-
East Atlantic (1)
-
North Atlantic (1)
-
-
Atlantic Ocean Islands
-
Canary Islands (1)
-
-
data processing (1)
-
geophysical methods (1)
-
Ocean Drilling Program
-
Leg 108
-
ODP Site 658 (1)
-
-
-
Geomechanical behaviour of gassy soils and implications for submarine slope stability: a literature analysis
Abstract Submarine slope failures pose a direct threat to seafloor installations and coastal communities. Here, we evaluate the influence of free gas on the soil's shear strength and submarine slope failures in areas with gassy soils based on an extensive literature review. We identify two potential destabilization mechanisms: gas bubbles in the pore space lead to a reduced shear strength of the soil and/or gas induces excess pore pressures that consequently reduce the effective stress in the soil. Our evaluation of the reported mechanical and hydraulic behaviour of gassy sediments indicates that the unfavourable impact of entrapped gas on a soil's shearing resistance is not sufficient to trigger large-scale slope failures. Liquefaction failure due to high gas pressures is, however, a viable scenario in coarse-grained soils. Transferring the gas influence on the soil mechanical behaviour to constitutive models is identified as the most important prerequisite for a successful future analysis of slope stability.
Mass wasting along the NW African continental margin
Abstract The NW African continental margin is well known for the occurrence of large-scale but infrequent submarine landslides. The aim of this paper is to synthesize the current knowledge on submarine mass wasting off NW Africa with a special focus on the distribution and timing of large landslides. The described area reaches from southern Senegal to the Agadir Canyon. The largest landslides from south to north are the Dakar Slide, the Mauritania Slide, the Cap Blanc Slide, the Sahara Slide and the Agadir Slide. Volumes of individual slides reach several hundreds of cubic kilometres; run-outs are up to 900 km. In addition, giant volcanic debris avalanches are widespread on the flanks of the Canary Islands. All headwall areas are complex with clear indications of multiple failures. The most prominent similarity between all investigated landsides is the existence of widespread glide planes that follow the stratigraphy, which points to weak layers as most important preconditioning factor for the failures. Landslides with volumes larger than 100 m 3 are close to being evenly distributed over time, contradicting previous suggestions that landslides off NW Africa occur at periods of low or rising sea level. The risk associated with the landslides off NW Africa, however, is relatively low due to their long recurrence rates.