- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
GeoRef Subject
-
all geography including DSDP/ODP Sites and Legs
-
Europe
-
Western Europe
-
Ireland
-
Galway Ireland (1)
-
-
United Kingdom
-
Great Britain
-
Wales
-
Anglesey Wales (1)
-
-
-
-
-
-
-
commodities
-
energy sources (1)
-
-
minerals
-
hydrates (1)
-
-
Primary terms
-
energy sources (1)
-
Europe
-
Western Europe
-
Ireland
-
Galway Ireland (1)
-
-
United Kingdom
-
Great Britain
-
Wales
-
Anglesey Wales (1)
-
-
-
-
-
-
oceanography (1)
-
sediments
-
marine sediments (2)
-
-
-
sediments
-
sediments
-
marine sediments (2)
-
-
Abstract In the public’s imagination, hydrates are seen as either a potential new source of energy to be exploited as the world uses up its reserves of oil and gas or as a major environmental hazard. Scientists, however, have expressed great uncertainty as to the global volume of hydrates and have reached little agreement on how they might be exploited. Both of these uncertainties can be reduced by a better understanding of how hydrates are held within sediments. There are conflicting ideas as to whether hydrates are disseminated within selected lithologies or trapped within fractures comparable to mineral lodes. To resolve this, hydrates have to be examined at all scales ranging from using seismics to microscopic studies. Their position within sediments also influences the stability of methane hydrate in responding to pressure and temperature and how the released gas might transfer to the ocean, atmosphere, or to a transport mechanism for recovery. These results also run parallel with the studies of carbon dioxide hydrate, which is being considered as a potential sequestion medium.
Gas hydrate drilling transect across northern Cascadia margin – IODP Expedition 311
Abstract A transect of four sites (U1325, U1326, U1327 and U1329) across the northern Cascadia margin was established during Integrated Ocean Drilling Program Expedition 311 to study the occurrence and formation of gas hydrate in accretionary complexes. In addition to the transect sites, a fifth site (U1328) was established at a cold vent with active fluid flow. The four transect sites represent different typical geological environments of gas hydrate occurrence across the northern Cascadia margin from the earliest occurrence on the westernmost first accreted ridge (Site U1326) to the eastward limit of the gas hydrate occurrence in shallower water (Site U1329). Expedition 311 complements previous gas hydrate studies along the Cascadia accretionary complex, especially ODP Leg 146 and Leg 204 by extending the aperture of the transect sampled and introducing new tools to systematically quantify the gas hydrate content of the sediments. Among the most significant findings of the expedition was the occurrence of up to 20 m thick sand-rich turbidite intervals with gas hydrate concentrations locally exceeding 50% of the pore space at Sites U1326 and U1327. Moreover, these anomalous gas hydrate intervals occur at unexpectedly shallow depths of 50–120 metres below seafloor, which is the opposite of what was expected from previous models of gas hydrate formation in accretionary complexes, where gas hydrate was predicted to be more concentrated near the base of the gas hydrate stability zone just above the bottom-simulating reflector. Gas hydrate appears to be mainly concentrated in turbidite sand layers. During Expedition 311, the visual correlation of gas hydrate with sand layers was clearly and repeatedly documented, strongly supporting the importance of grain size in controlling gas hydrate occurrence. The results from the transect sites provide evidence for a structurally complex, lithology-controlled gas hydrate environment on the northern Cascadia margin. Local shallow occurrences of high gas hydrate concentrations contradict the previous model of gas hydrate formation at an accretionary prism. However, long-lived fluid flow (part of the old model) is still required to explain the shallow high gas hydrate concentrations, although it is most likely not pervasive throughout the entire accretionary prism, but rather localized and focused by the tectonic processes. Differences in the fluid flow regime across all of the transect drill sites indicate site-specific and probably disconnected (compartmented) deeper fluid sources in the various parts of the accretionary prism. The data and future analyses will yield a better understanding of the geologic controls, evolution and ultimate fate of gas hydrate in an accretionary prism as an important contribution to the role of gas hydrate methane gas in slope stability and possibly in climate change.
Exploration strategy for economically significant accumulations of marine gas hydrate
Abstract There are at present no validated methods for reliably finding economically significant accumulations of natural gas hydrate in marine environments. The seismic bottom simulating reflector (BSR) has been regarded as a primary indicator of hydrate presence in marine environments, but the presence of a BSR conveys no information about the abundance of hydrate in the sediments above it. Seafloor features such as gas seeps, pockmarks or hydrate outcrops may be qualitative markers of deeper hydrate presence, but cannot be interpreted quantitatively. Another approach to exploration geophysics is required to find exploitable gas hydrate reservoirs with high reliability. It is known that in many cases gas is supplied to the gas hydrate stability zone primarily through faults or fractures. In a certain range of gas flux, these fissures should become mineralized with gas hydrate and form vertical or subvertical dykes. The dip and strike of these dykes are controlled by the principal stress directions, which can be predetermined. Thus multiple hydrate dykes are expected to be parallel. Even if the greatest volume of gas hydrate is to be found in sub-horizontal permeable beds, the steeply dipping mineralized conduits that fed gas to them may be the most reliable marker of substantial subsurface hydrate presence. Geological and geophysical survey methods sensitive to parallel arrays of vertical and subvertical hydrate dykes are presented.
Hydrocarbon gas hydrates in sediments of the Mississippi Canyon area, Northern Gulf of Mexico
Abstract The Gulf of Mexico Hydrates Research Consortium has begun installing a seafloor observatory to monitor gas hydrate outcrops and the hydrate stability zone in Mississippi Canyon Area Lease Block 118. Relevant background information concerning the Mississippi Canyon Area and gas hydrate occurrences in the northern Gulf of Mexico is presented. Microbial influences and possible scenarios of hydrate accumulation are considered. The design of the observatory was based on field data recorded in the Mississippi Canyon Area, principally lease block 118 (MC118) and the vicinity of lease block 798 (MC798). Swath bathymetry by autonomous underwater vehicle played a large part, as did seismic imaging within the hydrate stability zone and core sampling. These data and the results of their analyses are discussed in detail. Discussion and interim conclusions are presented.
Gas hydrate forming fluids on the NE Sakhalin slope, Sea of Okhotsk
Abstract An area of focused fluid venting off NE Sakhalin, Sea of Okhotsk, was investigated in 2003 during the 31st and 32nd international expeditions of R/V Akademik M. A. Lavrentyev within the framework of the CHAOS Project. More than 40 structures related to seafloor gas venting were discovered and gas hydrates were sampled from three of these: CHAOS, Hieroglyph and Kitami. Geochemical analyses were used to define the mechanisms of gas hydrate accumulation and the sources of fluids involved. Chemical and isotopic analyses of the interstitial and hydrate waters suggest that hydrates were formed from seawater (or in-situ pore water) and an ascending fluid enriched in salts. Hydrate formation occurs at locations of the most intensive saline water upflow, and this is probably a function of the gas solubility in water in equilibrium with hydrate. The water involved in gas hydrate formation consists of about 70% pore water derived from the host sediment and 30% from the ascending fluid. The overall isotopic composition of the ‘fluid’ taking part in hydrate formation was calculated as δ 2 H≈−11‰ and δ 18 O≈−1.5‰.
Abstract Seismic data has long suggested the presence of methane hydrates offshore Namibia. The seismic data shows the presence of well-developed bottom-simulating reflectors which can be mapped over a large area. A recent seabed coring programme has confirmed the presence of hydrates in the Namibe Basin. The hydrates appear to be associated with slump features and are a drilling hazard as well as a potential resource. The methane hydrate appears to originate from both biogenic and thermogenic sources.
Mapping hydrate stability zones offshore Scotland
Abstract One practical method to reduce environmentally damaging greenhouse gas emissions is through the geological storage of carbon dioxide. Deep, warm storage of carbon dioxide is currently taking place at Sleipner, North Sea and Weyburn, Canada. It is, however, also possible to store carbon dioxide as a liquid and hydrate in cool, sub-seabed sediments. Offshore north and west of Scotland seafloor pressures and temperatures are suitable for hydrate formation. In addition to the possibility of natural methane hydrate being present in this region, conditions may also be favourable for carbon dioxide storage as a liquid and hydrate. A computer program has been developed to calculate the depth to the base of the carbon dioxide and methane hydrate stability zones in two offshore regions: the Faeroe–Shetland Channel and the northern Rockall Trough. Results predict that methane hydrate remains stable to a maximum depth of 650 m below the seabed in the Faeroe–Shetland Channel, and 600 m below the seabed in the northern Rockall Trough; the carbon dioxide hydrate stability zone extends below the seabed to a depth of 345 and 280 m, respectively. No physical evidence for the existence of natural hydrate in these regions has been confirmed. Suitable conditions for carbon dioxide storage as a liquid and hydrate exist, and should this storage method be developed further, a more refined program and greater offshore investigations to improve data sets would be necessary to scope the full potential.
Abstract Much of our knowledge on hydrate distribution in the subsurface comes from interpretations of remote seismic measurements. A key step in such interpretations is an effective medium theory that relates the seismic properties of a given sediment to its hydrate content. A variety of such theories have been developed; these theories generally give similar results if the same assumptions are made about the extent to which hydrate contributes to the load-bearing sediment frame. We have further developed and modified one such theory, the self-consistent approximation/differential effective medium approach, to incorporate additional empirical parameters describing the extent to which both the sediment matrix material (clay or quartz) and the hydrate are load-bearing. We find that a single choice of these parameters allows us to match well both P and S wave velocity measurements from both laboratory and in situ datasets, and that the inferred proportion of hydrate that is load-bearing varies approximately linearly with hydrate saturation. This proportion appears to decrease with increasing hydrate saturation for gas-rich laboratory environments, but increases with hydrate saturation when hydrate is formed from solution and for an in situ example.
Abstract The presence of gas hydrate and free gas within marine sediments deposited along the South Shetland margin, offshore the Antarctic Peninsula, was confirmed by low and high resolution geophysical data, acquired during three research cruises. Seismic data analysis has revealed the presence of a bottom-simulating reflector that is very strong and continuous in the eastern part of the margin. This area can be considered as a useful site to study the seismic characteristics of sediments containing gas hydrate, with a particular focus on the estimation of gas hydrate and free gas amounts in the pore space. Pre-stack depth migration and tomographic inversion were performed to produce a regional velocity field of gas-phase bearing sediments and to obtain information about the average thickness of gas hydrate and free gas layers. Using these data and theoretical models, the gas hydrate and free gas concentrations can be estimated. Moreover, the common image gather semblance analysis revealed the presence of detailed features, such as layers with small thickness characterized by low velocity alternating with high velocity layers, below and above the bottom-simulating reflector. These layers are associated with free gas trapped within the hydrate stability zone and deeper sediments. Thus, the use of the detailed and the regional velocity field analysis is important to give a more reliable estimate of gas content in the marine sediments.
Mimicking natural systems: methane hydrate formation–decomposition in depleted sediments
Abstract We have initiated a systematic study of sediment–hydrate interaction under subsurface-mimic conditions to initially focus on marine hydrates. A major obstacle to studying natural hydrate systems has been the absence of a sophisticated mimic apparatus in which the hydrate formation phenomenon can be reproduced with precision. We have designed and constructed a bench-top unit, namely flexible integrated study of hydrates (FISH), for this purpose. The unit is fully instrumented to precisely record temperatures, pressures and changes in gas volume during absorption/evolution. The Labview software allows rapid and continuous data collection during the hydrate formation/dissociation cycle. In our integrated approach, several host sediments collected from Blake Ridge, a well-researched hydrate site, were characterized using the computed microtomography technique at Beamline X-26A of the National Synchrotron Light Source at Brookhaven National Laboratory. The characterized depleted sediments were then used to study the hydrate formation/decomposition kinetics under various pressures in the FISH unit. We report two hydrate formation methods: one under continuous methane gas-flow conditions (dynamic mode) and the other in which hydrates are formed from the dissolved gas phase by diffusion (static mode). Also reported is a depressurization method, namely the step-down pressure method, to yield gas evolution data. Data from such runs with host sediment from the deepest site (667 metres) is presented. During hydrate formation, the data reveals a temperature signature that is consistent with an exothermic hydrate formation event. In the decomposition cycle, data at various pressures was analysed to yield curves with similar slopes, suggesting a zero-order dependence. The capabilities of the FISH unit and the implications of these runs in establishing a database of sediment–hydrate kinetics and pore saturation are discussed.
Abstract Reservoirs of clathrate hydrates of natural gases (hydrates), found worldwide and containing huge amounts of bound natural gases (mostly methane), represent potentially vast and yet untapped energy resources. Since CO 2 Òcontaining hydrates are considerably more stable thermodynamically than methane hydrates, if we find a way to replace the original hydrate-bound hydrocarbons with the CO 2 , two goals can be accomplished at the same time: safe storage of carbon dioxide in hydrate reservoirs, and in situ release of hydrocarbon gas. We have applied the techniques of magnetic resonance imaging as a tool to visualize the conversion of CH 4 hydrate within Bentheim sandstone matrix into the CO 2 hydrate. Corresponding model systems have been simulated using the phase field theory approach. Our theoretical studies indicate that the kinetic behaviour of the systems closely resembles that of CO 2 transport through an aqueous solution. We have interpreted this to mean that the hydrate and the matrix mineral surfaces are separated by liquid-containing channels. These channels will serve as escape routes for released natural gas, as well as distribution channels for injected CO 2 .
Gas hydrate growth and dissociation in narrow pore networks: capillary inhibition and hysteresis phenomena
Abstract Marine sediments hosting gas hydrates are commonly fine-grained (silts, muds, clays) with very narrow mean pore diameters (∼0.1 µm). This has led to speculation that capillary phenomena could play an important role in controlling hydrate distribution in the seafloor, and may be in part responsible for discrepancies between observed and predicted (from bulk phase equilibria) hydrate stability zone (HSZ) thicknesses. Numerous recent laboratory studies have confirmed a close relationship between hydrate inhibition and pore size, stability being reduced in narrow pores; however, to date the focus has been hydrate dissociation conditions in porous media, with capillary controls on the equally important process of hydrate growth being largely neglected. Here, we present experimental methane hydrate growth and dissociation conditions for synthetic mesoporous silicas over a range of pressure–temperature ( PT ) conditions (273–293 K, to 20 MPa) and pore size distributions. Results demonstrate that hydrate formation and decomposition in narrow pore networks is characterized by a distinct hysteresis: solid growth occurs at significantly lower temperatures (or higher pressures) than dissociation. Hysteresis takes the form of repeatable, irreversible closed primary growth and dissociation PT loops, within which various characteristic secondary ‘scanning’ curve pathways may be followed. Similar behaviour has recently been observed for ice–water systems in porous media, and is characteristic of liquid–vapour transitions in mesoporous materials. The causes of such hysteresis are still not fully understood; our results suggest pore blocking during hydrate growth as a primary cause.
Abstract The grain sizes of gas hydrate crystallites are largely unknown in natural samples. Single grains are hardly detectable with electron or optical microscopy. For the first time, we have used high-energy synchrotron diffraction to determine grain sizes of six natural gas hydrates retrieved from the Bush Hill region in the Gulf of Mexico and from ODP Leg 204 at the Hydrate Ridge offshore Oregon from varying depth between 1 and 101 metres below seafloor. High-energy synchrotron radiation provides high photon fluxes as well as high penetration depth and thus allows for investigation of bulk sediment samples. Gas hydrate grain sizes were measured at the Beam Line BW 5 at the HASYLAB/Hamburg. A ‘moving area detector method’, originally developed for material science applications, was used to obtain both spatial and orientation information about gas hydrate grains within the sample. The gas hydrate crystal sizes appeared to be (log-)normally distributed in the natural samples. All mean grain sizes lay in the range from 300 to 600 µm with a tendency for bigger grains to occur in greater depth. Laboratory-produced methane hydrate, aged for 3 weeks, showed half a log-normal curve with a mean grain size value of c . 40 µm. The grains appeared to be globular shaped.
Can CO 2 hydrate assist in the underground storage of carbon dioxide?
Abstract The sequestration of CO 2 in the deep geosphere is one potential method for reducing anthropogenic emissions to the atmosphere without necessarily incurring a significant change in our energy-producing technologies. Containment of CO 2 as a liquid and an associated hydrate phase, under cool conditions, offers an alternative underground storage approach compared with conventional supercritical CO 2 storage at higher temperatures. We briefly describe conventional approaches to underground storage, review possible approaches for using CO 2 hydrate in CO 2 storage generally, and comment on the important role CO 2 hydrate could play in underground storage. Cool underground storage appears to offer certain advantages in terms of physical, chemical and mineralogical processes, which may usefully enhance trapping of the stored CO 2 . This approach also appears to be potentially applicable to large areas of sub-seabed sediments offshore Western Europe.
Abstract There is much interest in gas hydrates in relation to their potential role as an important driver for climate change and as a major new energy source; however, many questions remain, not least the size of the global hydrate budget. Much of the current uncertainty centres on how hydrates are physically stored in sediments at a range of scales. This volume details advances in our understanding of sediment-hosted hydrates, and contains papers covering a range of studies of real and artificial sediments containing both methane hydrates and CO 2 hydrates. The papers include an examination of the techniques used to locate, sample and characterize hydrates from natural, methane-rich systems, so as to understand them better. Other contributions consider the nature and stability of synthetic hydrates formed in the laboratory, which in turn improve our ability to make accurate predictive models.
Rapid non-contacting resistivity logging of core
Abstract We demonstrate a non-contact approach to whole-core and split-core resistivity measurements, imaging a 15 mm-thick, dipping, conductive layer, producing a continuous log of the whole core and enabling the development of a framework to allow representative plugs to be taken, for example. Applications include mapping subtle changes in grain fabric (e.g. grain shape) caused by variable sedimentation rates, for example, as well as the well-known dependencies on porosity and water saturation. The method operates at relatively low frequencies (i.e. low induction numbers), needing highly sensitive coil pairs to provide resistivity measurements at the desired resolution. A four-coil arrangement of two pairs of transmitter and receiver coils is used to stabilize the measurement. One ‘coil pair’ acts as a control, enabling the effects of local environmental variations, which can be considerable, to be removed from the measurement at source. Comparing our non-contact approach and independent traditional ‘galvanic’ resistivity measurements indicates that the non-contact measurements are directly proportional to the reciprocal of the sample resistivity (i.e. conductivity). The depth of investigation is discussed in terms of both theory and practical measurements, and the response of the technique to a variety of synthetic ‘structures’ is presented. We demonstrate the potential of the technique for rapid electrical imaging of core and present a whole-core image of a dipping layer with azimuthal discrimination at a resolution of the order of 10 mm. Consequently, the technique could be used to investigate different depths within the core, in agreement with theoretical predictions.
Abstract The Penrith Sandstone is an orange/red, mainly homogeneous, friable rock made up of well-rounded, highly spherical quartz grains, often showing euhedral overgrowths of quartz. Sandstone samples from Stoneraise Quarry, NW England, exhibit a remarkable degree of rounding and very high sphericity, along with frosted textures typical of aeolian deposits. Chemically, the rock is predominantly SiO 2 (>95%), with no evidence of carbonate cements. Quartz predominates with a small proportion (10%) of feldspar. The grain size across heterogeneous zones varies from very fine (100 µm) to coarse sand (700 µm). There is no evidence of the presence of clay minerals. Petrophysically, based on the measurements made in this study, the Penrith Sandstone is a typical clean sandstone characterized by moderate porosity (12%) and core-plug permeability (10 −14 −10 −12 m 2 ), and Archie ‘ m ’ exponents between 1.90 and 1.91, suggesting a reasonably clean ‘Archie’ rock with no excess conductivity associated with clays or bound water. Capillary pressure curves for four samples demonstrate unimodal pore-size distributions with a single modal range that varies between 25–50 and 70–80 µm. Because of the relative simplicity of its petrophysics, the sandstone is thus potentially very useful in fundamental studies, and also in the trialling of new techniques. We use imaging techniques to investigate the degree of heterogeneity and the fabric of the Penrith Sandstone. Conventional optical images are complemented by electrical resistivity, porosity and mini-permeametry images. These two-dimensional maps of resolution of approximately 5 mm show a spatial similarity determined by the rock fabric. The detailed images show a wider degree of variation and heterogeneity than the plug-averaged values. The success of the resistivity imaging method suggests that the technique could be used in deriving correlations that could be used to interpret borehole resistivity imaging logs. However, in the present study, correlations of property values derived from the imaging do show considerable scatter: this suggests that heterogeneity even below the scale of the imaging is also important, a conclusion supported by thin-section and electronmicroscope data.
Abstract Methane hydrates have been recovered or postulated for virtually all continental margins around the world and a few areas onshore. Volumes of about 2 × 10 14 m 3 have been estimated for this potential resource. However, only a few sites have been suggested offshore northwest Europe, despite extensive hydrocarbon exploration and academic studies of the margin. Reasons for this anomaly are unclear. To aid the search a new hydrate stability zone map for the UK is presented. As well as identifying a resource, hydrate studies are also important in assessing geohazards to deep-water exploration and development. Stability, processes and distribution information contribute to the wider climate change debate as methane hydrates are estimated to hold a significant part of the global organic carbon budget. To quantify reserve potential and to identify suitable methods of methane extraction, a full understanding of how hydrates are held within sediments is required. Although modelling (physical and theoretical) can contribute to an understanding, it is important to evaluate in situ conditions to ‘ground truth’ acoustic data and imagery. How hydrate is held and its control of dynamic geotechnical behaviour within the sedimentary system is still very poorly understood. Parameters such as pore size, fluid saturations, sediment mineralogy and cementation will affect hydrate morphology, distribution, behaviour (during dissociation) and potential recovery from porous media. Assessing physical parameters and processes under in situ conditions provides the next step along the route to exploiting methane hydrates as a resource. The requirement to recover samples under in situ pressures and temperature conditions provides a significant technological challenge that has been attempted over the last few years with some success. Currently, the European HYACINTH project is developing systems to recover, analyse and manipulate hydrate-bearing sediments under in situ pressures and temperatures. On Leg 204 of ODP this equipment was used for the first time to recover hydrate cores at in situ pressure, transfer them without loss of pressure into laboratory chambers and to log them geophysically. As the database of in situ properties grows, integrated laboratory studies of synthetic sediment-hosted hydrates can be developed to provide important benchmarking, which is crucial for the study of rare natural core samples.