- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
GeoRef Subject
-
all geography including DSDP/ODP Sites and Legs
-
Africa
-
Southern Africa
-
Barberton greenstone belt (3)
-
Kaapvaal Craton (3)
-
South Africa
-
Mpumalanga South Africa
-
Barberton South Africa (1)
-
-
Transvaal region (1)
-
-
-
-
Asia
-
Indian Peninsula
-
India
-
Bastar Craton (1)
-
Bundelkhand (1)
-
Dharwar Craton (1)
-
Ghats
-
Eastern Ghats (1)
-
-
Southern Granulite Terrain (1)
-
-
-
-
Europe
-
Western Europe
-
France
-
Central Massif (1)
-
-
-
-
Jack Hills (1)
-
North America
-
Canadian Shield
-
Superior Province
-
Abitibi Belt (1)
-
-
-
-
Pacific Ocean
-
North Pacific
-
Northwest Pacific
-
Izu-Bonin Arc (1)
-
-
-
West Pacific
-
Northwest Pacific
-
Izu-Bonin Arc (1)
-
-
-
-
-
elements, isotopes
-
chemical ratios (1)
-
isotope ratios (2)
-
isotopes
-
stable isotopes
-
Nd-144/Nd-143 (1)
-
O-18/O-16 (1)
-
Sr-87/Sr-86 (1)
-
-
-
metals
-
alkaline earth metals
-
strontium
-
Sr-87/Sr-86 (1)
-
-
-
hafnium (1)
-
rare earths
-
neodymium
-
Nd-144/Nd-143 (1)
-
-
-
titanium (1)
-
zinc (1)
-
-
oxygen
-
O-18/O-16 (1)
-
-
-
geochronology methods
-
U/Pb (1)
-
-
geologic age
-
Paleozoic
-
Carboniferous (1)
-
Devonian (1)
-
-
Precambrian
-
Archean
-
Eoarchean (1)
-
Mesoarchean (1)
-
Neoarchean (2)
-
Paleoarchean (3)
-
Singhbhum Granite (1)
-
-
Hadean (1)
-
upper Precambrian
-
Proterozoic
-
Paleoproterozoic (2)
-
-
-
-
-
igneous rocks
-
igneous rocks
-
plutonic rocks
-
diorites
-
tonalite (3)
-
trondhjemite (2)
-
-
granites
-
A-type granites (1)
-
biotite granite (1)
-
-
granodiorites (2)
-
-
volcanic rocks
-
andesites
-
boninite (1)
-
-
basalts
-
mid-ocean ridge basalts (1)
-
tholeiite (1)
-
-
-
-
ophiolite (1)
-
-
metamorphic rocks
-
metamorphic rocks
-
amphibolites (1)
-
gneisses
-
orthogneiss (1)
-
-
metaigneous rocks
-
metagranite (1)
-
-
migmatites (1)
-
-
ophiolite (1)
-
-
minerals
-
phosphates
-
apatite (1)
-
-
silicates
-
orthosilicates
-
nesosilicates
-
zircon group
-
zircon (3)
-
-
-
-
-
-
Primary terms
-
Africa
-
Southern Africa
-
Barberton greenstone belt (3)
-
Kaapvaal Craton (3)
-
South Africa
-
Mpumalanga South Africa
-
Barberton South Africa (1)
-
-
Transvaal region (1)
-
-
-
-
Asia
-
Indian Peninsula
-
India
-
Bastar Craton (1)
-
Bundelkhand (1)
-
Dharwar Craton (1)
-
Ghats
-
Eastern Ghats (1)
-
-
Southern Granulite Terrain (1)
-
-
-
-
bibliography (1)
-
crust (7)
-
crystal growth (1)
-
data processing (2)
-
Europe
-
Western Europe
-
France
-
Central Massif (1)
-
-
-
-
geochemistry (4)
-
geochronology (1)
-
igneous rocks
-
plutonic rocks
-
diorites
-
tonalite (3)
-
trondhjemite (2)
-
-
granites
-
A-type granites (1)
-
biotite granite (1)
-
-
granodiorites (2)
-
-
volcanic rocks
-
andesites
-
boninite (1)
-
-
basalts
-
mid-ocean ridge basalts (1)
-
tholeiite (1)
-
-
-
-
intrusions (2)
-
isotopes
-
stable isotopes
-
Nd-144/Nd-143 (1)
-
O-18/O-16 (1)
-
Sr-87/Sr-86 (1)
-
-
-
magmas (7)
-
mantle (4)
-
metals
-
alkaline earth metals
-
strontium
-
Sr-87/Sr-86 (1)
-
-
-
hafnium (1)
-
rare earths
-
neodymium
-
Nd-144/Nd-143 (1)
-
-
-
titanium (1)
-
zinc (1)
-
-
metamorphic rocks
-
amphibolites (1)
-
gneisses
-
orthogneiss (1)
-
-
metaigneous rocks
-
metagranite (1)
-
-
migmatites (1)
-
-
metamorphism (1)
-
metasomatism (2)
-
North America
-
Canadian Shield
-
Superior Province
-
Abitibi Belt (1)
-
-
-
-
orogeny (1)
-
oxygen
-
O-18/O-16 (1)
-
-
Pacific Ocean
-
North Pacific
-
Northwest Pacific
-
Izu-Bonin Arc (1)
-
-
-
West Pacific
-
Northwest Pacific
-
Izu-Bonin Arc (1)
-
-
-
-
Paleozoic
-
Carboniferous (1)
-
Devonian (1)
-
-
plate tectonics (6)
-
Precambrian
-
Archean
-
Eoarchean (1)
-
Mesoarchean (1)
-
Neoarchean (2)
-
Paleoarchean (3)
-
Singhbhum Granite (1)
-
-
Hadean (1)
-
upper Precambrian
-
Proterozoic
-
Paleoproterozoic (2)
-
-
-
-
symposia (1)
-
tectonics (3)
-
Late Ediacaran juvenile magmatism in the Variscan Monts-du-Lyonnais metamorphic complex (Massif Central, France)
At the Dawn of Continents: Archean Tonalite-Trondhjemite-Granodiorite Suites
Advanced Training Programme on Granites and Related Rocks and Field Workshop in Kumaun Lesser Himalaya
Early Earth zircons formed in residual granitic melts produced by tonalite differentiation: REPLY
Early Earth zircons formed in residual granitic melts produced by tonalite differentiation
Abstract Granitoids form the dominant component of Archean cratons. They are generated by partial melting of diverse crustal and mantle sources and subsequent differentiation of the primary magmas, and are formed through a variety of geodynamic processes. Granitoids, therefore, are important archives for early Earth lithospheric evolution. Peninsular India comprises five cratonic blocks bordered by mobile belts. The cratons that stabilized during the Paleoarchean–Mesoarchean (Singhbhum and Western Dharwar) recorded mostly diapirism or sagduction tectonics. Conversely, cratons that stabilized during the late Neoarchean (Eastern Dharwar, Bundelkhand, Bastar and Aravalli) show evidence consistent with terrane accretion–collision in a convergent setting. Thus, the Indian cratons provide testimony to a transition from a dominantly pre-plate tectonic regime in the Paleoarchean–Mesoarchean to a plate-tectonic-like regime in the late Neoarchean. Despite this diversity, all five cratons had a similar petrological evolution with a long period (250–850 myr) of episodic tonalite–trondhjemite–granodiorite (TTG) magmatism followed by a shorter period (30–100 myr) of granitoid diversification (sanukitoid, K-rich anatectic granite and A-type granite) with signatures of input from both mantle and crust. The contributions of this Special Publication cover diverse granitoid-related themes, highlighting the potential of Indian cratons in addressing global issues of Archean crustal evolution.
Archean granitoids: classification, petrology, geochemistry and origin
Abstract This paper describes the petrology, geochemistry and petrogenesis of Archean granitoids. Archean granites define a continuum of compositions between several end members: (i) magmas that originated by partial melting of a range of crustal sources, from amphibolites to metasediments (‘C-type’ granitoids); and (ii) magmas that formed by partial melting of an enriched mantle source, the most common agent of enrichment being felsic (TTG) melts. Differences in the degree of metasomatism results in different primitive liquids for these ‘M-type’ granitoids. Mixed sources, differentiation and interactions between different melts resulted in a continuous range of compositions, defined by variable proportions of each end member. During the Archean, evolved crustal sources (sediments or felsic crust) and metasomatized mantle sources become increasingly more important, mirroring the progressive maturation of crustal segments and the stabilization of the global tectonic system.
Flow of partially molten crust controlling construction, growth and collapse of the Variscan orogenic belt: the geologic record of the French Massif Central
Abstract Granites ( sensu lato ) come in many types and flavours, defining distinct magmatic series/suites/types. A good classification not only gives generally accepted and understandable names to similar rocks but also links the bulk chemical composition to the stoichiometry of the constituent minerals and, potentially, also to the likely source, magmatic evolution and tectonic setting. The ‘ideal’ granitoid classification should be based on chemical criteria amenable to an objective treatment. Statistical analysis helps to identify the most discriminant variables. The key properties are (1) acidity/maficity, (2) alkalinity (balance of Na + K v. Ca), (3) aluminosity (balance of Al v. Ca, Na and K), (4) Fe/Mg balance and (5) Na/K balance and K contents at the given SiO 2 level. These are used by successful classifications, e.g. the I/S dichotomy is based mainly on aluminosity, while the Frost et al. (2001 ; ‘A geochemical classification for granitic rocks', Journal of Petrology , 42 , 2033–2048, https://doi.org/10.1093/petrology/42.11.2033 ) classification includes all but Na/K. Even though it is commonplace to use weight percentages of oxides, we suggest that a better strategy is to employ simple atomic parameters (e.g. millications-based) that can be directly linked to modal proportions and compositions/crystal structure of individual rock-forming minerals. This facilitates a petrological interpretation, which, in turn, can be related to petrogenesis and, ultimately, to likely tectonic setting(s).
Abstract The origin of large I-type batholiths remains a disputed topic. One model states that I-type granites form by partial melting of older crustal lithologies (amphibolites or intermediate igneous rocks). In another view, granites are trapped rhyolitic liquids occurring at the end of fractionation trends defining a basalt–andesite–dacite–rhyolite series. This paper explores the thermal implications of both scenarios, using a heat balance model that abstracts the heat production and consumption during crustal melting. Heat is consumed by melting and by losses through the surface (conductive or advective, as a result of eruption). It is supplied as a basal conductive heat flux, as internal heat production or as advective heat carried by an influx of hot basalt into the crust. Using this abstract approach, it is possible to explore the role different parameters play in the balance of granites formed by differentiation of basalts or by crustal melting. Two end-member situations appear equally favourable to generating large volumes of granites: (1) short-lived environments dominated by high basaltic flux, where granites result mostly from basalt differentiation; and (2) long-lived systems with no or minimal basalt flux, with granites resulting chiefly from crustal melting.
Abstract Modern quantitative phase equilibria modelling allows the calculation of the stable phase assemblage of a rock system given its pressure, temperature and bulk composition. A new software tool (Rcrust) has been developed that allows the modelling of points in pressure–temperature–bulk composition space in which bulk compositional changes can be passed from point to point as the system evolves. This new methodology enables quantitative process-oriented investigation of the evolution of rocks. Procedures are outlined here for using this tool to model: (1) the control of the water content of a subsolidus system based on available pore space; (2) the triggering of melt loss events when a critical melt volume threshold is exceeded, while allowing a portion of melt retention; (3) the entrainment of crystals during segregation and ascent of granitic magmas from its source; (4) the modification of the composition of granite magmas owing to fractional crystallization; and (5) the progressive availability (through dissolution) of slow diffusing species and their control of the effective bulk composition of a system. These cases collectively illustrate thermodynamically constrained methods for modelling systems that involve mass transfer.
Abstract The ability of Rcrust software to conduct path-dependent phase equilibrium modelling with automated changing bulk compositions allows for a phase equilibrium approach to investigate an array of source controls for their effect on the bulk compositions of melts produced by sequential melting events. The following source controls of the rock system are considered: (1) initial magnesium and iron content; (2) initial sodium and calcium content; (3) pressure–temperature path followed by the system; and (4) threshold by which melt extractions in the system are triggered. These source controls are investigated in a water-restricted system and a water-in-excess system. The permutation of these cases resulted in 128 different modelled pressure–temperature bulk composition paths investigating the melting of an average pelite composition. The resultant melt compositions are compared to that of a natural granite dataset and provide a good fit for the incompatible elements Na 2 O and K 2 O with the allowance that granites most likely form as magmas consisting of melt and ferromagnesian-rich crystals. The fluid state of the system is shown to have the strongest control on melt compositions, with the pressure–temperature path having subordinate control on the volume and composition of melts produced.
Abstract Whole-rock geochemistry represents a powerful tool in deciphering petrogenesis of magmatic suites, including granitoids, which can be used to formulate and test hypotheses qualitatively and often also quantitatively. Typically, it can rule out impossible/improbable scenarios and further constrain the process inferred on geological and petrological grounds. With the current explosion of high-precision data, both newly acquired and retrieved from extensive databases, the whole-rock geochemistry-based petrogenetic modelling of igneous rocks will gain further importance. Especially promising is its combination with thermodynamic modelling into a single, coherent and comprehensive software, using the R and Python languages.
Heading down early on? Start of subduction on Earth
Short-term episodicity of Archaean plate tectonics
Diversity in Earth's early felsic crust: Paleoarchean peraluminous granites of the Barberton Greenstone Belt
Plutonism versus Neptunism at the southern tip of Africa: the debate on the origin of granites at the Cape, 1776–1844
The Cape Granites are a granitic suite intruded into Neoproterozoic greywackes and slates, and unconformably overlain by early Palaeozoic Table Mountain Group orthoquartzites. They were first recognised at Paarl in 1776 by Francis Masson, and by William Anderson and William Hamilton in 1778. Studies of the Cape Granites were central to some of the early debates between the Wernerian Neptunists (Robert Jameson and his former pupils) and the Huttonian Plutonists (John Playfair, Basil Hall, Charles Darwin), in the first decades of the 19th Century, since it is at the foot of Table Mountain that the first intrusive granites outside of Scotland were described by Hall in 1812. The Neptunists believed that all rocks, including granite and basalt, were precipitated from the primordial oceans, whereas the Plutonists believed in the intrusive origin of some igneous rocks, such as granite. In this paper, some of the early descriptions and debates concerning the Cape Granites are reviewed, and the history of the development of ideas on granites (as well as on contact metamorphism and sea level changes) at the Cape in the late 18th Century and early to mid 19th Century, during the emerging years of the discipline of geology, is presented for the first time.
A specific type of granitoid, referred to as sanukitoid (Shirey & Hanson 1984), was emplaced mainly across the Archaean–Proterozoic transition. The major and trace element composition of sanukitoids is intermediate between typical Archaean TTG and modern arc granitoids. However, among sanukitoids, two groups can be distinguished on the basis of the Ti content of the less differentiated rocks of the suite: high- and low-Ti sanukitoids. Melting experiments and petrogenetic modelling show that they may have formed by either (1) melting of mantle peridotite previously metasomatised by felsic melts of TTG composition, or (2) by reaction between TTG melts and mantle peridotite (assimilation). Rocks of the sanukitoid suite were emplaced at the Archaean–Proterozoic boundary, possibly marking the time when TTG-dominated granitoid magmatism changed to a more modern-style, arc-dominated magmatism. Consequently, the intermediate character of sanukitoids is not only compositional but chronological. The succession of granitoid magmatism with time is integrated in a plate tectonic model where it is linked to the thermal evolution of subduction zones, reflecting the progressive cooling of Earth: (1) the Archaean Earth’s heat production was high enough to allow the production of large amounts of TTG granitoids formed by partial melting of recycled basaltic crust (‘slab melting’); (2) at the end of the Archaean, due to the progressive cooling of the Earth, the extent of slab melting was reduced, resulting in lower melt:rock ratios. In such conditions the slab melts can be strongly contaminated by assimilation of mantle peridotite, thus giving rise to low-Ti sanukitoids. It is also possible that the slab melts were totally consumed in reactions with mantle peridotite, subsequent melting of this ‘melt-metasomatised mantle’ producing the high-Ti sanukitoid magmas; (3) after 2·5 Ga, Earth heat production was too low to allow slab melting, except in relatively rare geodynamic circumstances, and most modern arc magmas are produced by melting of the mantle wedge peridotite metasomatised by fluids from dehydration of the subducted slab. Of course, such changes did not take place exactly at the same time all over the world. The Archaean mechanisms coexisted with new processes over a relatively long time period, even if they were subordinate to the more modern processes.
The geochemistry of Archaean plagioclase-rich granites as a marker of source enrichment and depth of melting
In geochemical diagrams, granitoids define ‘trends’ that reflect increasing differentiation or melting degree. The position of an individual sample in such a trend, whilst linked to the temperature of equilibration, is difficult to interpret. On the other hand, the positions of the trends within the geochemical space (and not the position of a sample within a trend) carry important genetic information, as they reflect the nature of the source (degree of enrichment) and the depth of melting. This paper discusses the interpretation of geochemical trends, to extract information relating to the sources of granitoid magmas and the depth of melting. Applying this approach to mid-Archaean granitoids from both the Barberton granite–greenstone terrane (South Africa) and the Pilbara Craton (Australia) reveals two features. The first is the diversity of the group generally referred to as ‘TTGs’ (tonalites, trondhjemites and granodiorites). These appear to be composed of at least three distinct sub-series, one resulting from deep melting of relatively depleted sources, the second from shallower melting of depleted sources, and the third from shallow melting of enriched sources. The second feature is the contrast between the (spatial as well as temporal) distributions and associations of the granites in both cratons.