- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
GeoRef Subject
-
all geography including DSDP/ODP Sites and Legs
-
Canada
-
Eastern Canada
-
Ontario (1)
-
-
-
Eagle Lake (1)
-
North America
-
Great Lakes
-
Lake Michigan (2)
-
-
Great Lakes region (1)
-
-
United States
-
Illinois
-
Cook County Illinois
-
Chicago Illinois (1)
-
-
-
Indiana (1)
-
Michigan (1)
-
Minnesota (1)
-
New York (1)
-
Ohio (1)
-
Pennsylvania (1)
-
-
-
commodities
-
water resources (1)
-
-
elements, isotopes
-
carbon
-
C-14 (2)
-
-
isotopes
-
radioactive isotopes
-
C-14 (2)
-
-
-
-
fossils
-
Plantae
-
Spermatophyta
-
Angiospermae
-
Dicotyledoneae
-
Dryas (1)
-
-
-
-
-
-
geochronology methods
-
optically stimulated luminescence (1)
-
-
geologic age
-
Cenozoic
-
Quaternary
-
Holocene (1)
-
Pleistocene
-
upper Pleistocene (1)
-
-
-
-
Laurentide ice sheet (1)
-
-
Primary terms
-
absolute age (1)
-
Canada
-
Eastern Canada
-
Ontario (1)
-
-
-
carbon
-
C-14 (2)
-
-
Cenozoic
-
Quaternary
-
Holocene (1)
-
Pleistocene
-
upper Pleistocene (1)
-
-
-
-
environmental geology (1)
-
geochronology (1)
-
geology (1)
-
geomorphology (2)
-
government agencies
-
survey organizations (1)
-
-
ground water (1)
-
isotopes
-
radioactive isotopes
-
C-14 (2)
-
-
-
land use (1)
-
North America
-
Great Lakes
-
Lake Michigan (2)
-
-
Great Lakes region (1)
-
-
paleoclimatology (1)
-
Plantae
-
Spermatophyta
-
Angiospermae
-
Dicotyledoneae
-
Dryas (1)
-
-
-
-
-
sedimentation (1)
-
sediments
-
clastic sediments
-
diamicton (1)
-
-
gyttja (1)
-
-
United States
-
Illinois
-
Cook County Illinois
-
Chicago Illinois (1)
-
-
-
Indiana (1)
-
Michigan (1)
-
Minnesota (1)
-
New York (1)
-
Ohio (1)
-
Pennsylvania (1)
-
-
water resources (1)
-
-
sediments
-
sediments
-
clastic sediments
-
diamicton (1)
-
-
gyttja (1)
-
-
Deglacial Kankakee Torrent, source to sink
ABSTRACT The last-glacial megaflood Kankakee Torrent streamlined hills and the remarkably straight backslope of the Kalamazoo moraine (Lake Michigan lobe of the Laurentide ice sheet) in southwestern Michigan. Flooding ensued as proglacial Lake Dowagiac overflowed across remnants of the Lake Michigan lobe at the position of the inner margin of the Kalamazoo moraine as glacial debris and ablating ice were pinned against Portage Prairie. Proglacial Lake Dowagiac developed in the Dowagiac River valley as the lobe retreated to form the Valparaiso moraine. A minimum age of the Kankakee Torrent (18.7 ± 0.6 k.y. B.P) is indicated by the weighted mean value of six optically stimulated luminescence ages determined from quartz sand in glaciofluvial sediment on the Kalamazoo moraine (Lake Michigan and Saginaw lobes). This value is consistent with tighter age control based on radiocarbon ages of tundra plants within silty sediment forming ice-walled lake plains and in a torrent-scoured lake basin (Oswego channel) in Illinois. Crosscutting relationships of well-dated moraines indicate the Kankakee Torrent occurred sometime between 19.7 and 18.9 calibrated (cal.) k.y. B.P. as it skirted the south margin of the Valparaiso Morainic System.
ABSTRACT The Eagle Lake basin was formed by collapse of the ablating Lake Michigan lobe over a tunnel valley and subsequent reoccupation of the collapse basin by the lobe during local final phase of glaciation. Latest collapse occurred prior to about 16,250 but after 18,600 cal yr B.P. A hydrologically open lake occupied Eagle Lake basin from 16,250 cal yr B.P. to the present. The lake was described in 1834 by the original land survey, but was drained for agriculture by 1939.
The Great Lakes Geologic Mapping Coalition (GLGMC), consisting of state geological surveys from all eight Great Lakes states, the Ontario Geological Survey, and the U.S. Geological Survey, was conceived out of a societal need for unbiased and scientifically defensible geologic information on the shallow subsurface, particularly the delineation, interpretation, and viability of groundwater resources. Only a small percentage (<10%) of the region had been mapped in the subsurface, and there was recognition that no single agency had the financial, intellectual, or physical resources to conduct such a massive geologic mapping effort at a detailed scale over a wide jurisdiction. The GLGMC provides a strategy for generating financial and stakeholder support for three-dimensional (3-D) geologic mapping, pooling of physical and personnel resources, and sharing of mapping and technological expertise to characterize the thick cover of glacial sediments. Since its inception in 1997, the GLGMC partners have conducted detailed surficial and 3-D geologic mapping within all jurisdictions, and concurrent significant scientific advancements have been made to increase understanding of the history and framework of geologic processes. More importantly, scientific information has been provided to public policymakers in understandable formats, emphasis has been placed on training early-career scientists in new mapping techniques and emerging technologies, and a successful model has been developed of state/provincial and federal collaboration focused on geologic mapping, as evidenced by this program’s unprecedented and long-term successful experiment of 10 geological surveys working together to address common issues.