Update search
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
Format
Article Type
Journal
Publisher
GeoRef Subject
-
all geography including DSDP/ODP Sites and Legs
-
United States
-
Alaska (1)
-
-
-
geologic age
-
Cenozoic
-
Quaternary
-
Holocene (1)
-
-
-
-
Primary terms
-
Cenozoic
-
Quaternary
-
Holocene (1)
-
-
-
glacial geology (1)
-
paleoclimatology (1)
-
sedimentary structures
-
planar bedding structures
-
laminations (1)
-
varves (1)
-
-
-
Sun (1)
-
United States
-
Alaska (1)
-
-
-
sedimentary structures
-
sedimentary structures
-
planar bedding structures
-
laminations (1)
-
varves (1)
-
-
-
GeoRef Categories
Era and Period
Epoch and Age
Book Series
Date
Availability
Solar activity expressed in a modern varve thickness sequence Available to Purchase
Sclerosponges: Potential High-Resolution Recorders of Marine Paleotemperatures Available to Purchase
Abstract Sclerosponges have great potential as seawater temperature recorders. These animals precipitate their skeletons in carbon and oxygen isotopic equilibrium with the surrounding seawater ( Druffel and Benavides, 1986 ). Their skeletons also display chemical properties that vary directly with changes in environmental conditions. Lack of photosynthetic symbionts allows sclerosponges to live below the photic zone, providing the potential to investigate past marine conditions beyond the range of corals. Individual sponges live for several centuries, preserving archives of pre- and postindustrial seawater variations within single specimens ( Hartman and Reiswig, 1980 ). Crosscorrelation of successively older specimens could yield up to 2000 years of marine history. Extracting environmental information can be accomplished by determining elemental characteristics preserved in skeletal growth bands. A method is presented here that utilizes energy dispersive spectroscopy (EDS) to provide inexpensive assessment of magnesium (Mg): calcium (Ca) and chlorine (Cl): calcium (Ca) ratios at high spatial resolution, yielding environmental data with correspondingly high temporal resolution. The relationship between environmental conditions and skeletal characteristics is defined by a spectral transfer function, which can then be applied to skeletal carbonate data from ancient sponges to reconstruct past environmental conditions. Accurate reconstruction of seawater temperature and salinity variations is demonstrated here at submonthly resolution. The technique’s efficiency is ideal for documenting long, high-resolution records of marine paleoenvironments.