- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
GeoRef Subject
-
all geography including DSDP/ODP Sites and Legs
-
East Pacific Ocean Islands
-
Hawaii
-
Hawaii County Hawaii
-
Hawaii Island
-
Kilauea (1)
-
-
-
-
-
Europe
-
Southern Europe
-
Italy
-
Sicily Italy
-
Mount Etna (2)
-
-
-
-
Western Europe
-
France
-
Auvergne (1)
-
Puy-de-Dome France
-
Chaine des Puys (1)
-
-
-
-
-
Oceania
-
Polynesia
-
Hawaii
-
Hawaii County Hawaii
-
Hawaii Island
-
Kilauea (1)
-
-
-
-
-
-
United States
-
Hawaii
-
Hawaii County Hawaii
-
Hawaii Island
-
Kilauea (1)
-
-
-
-
-
-
igneous rocks
-
igneous rocks
-
volcanic rocks
-
pyroclastics (1)
-
-
-
volcanic ash (1)
-
-
Primary terms
-
data processing (2)
-
East Pacific Ocean Islands
-
Hawaii
-
Hawaii County Hawaii
-
Hawaii Island
-
Kilauea (1)
-
-
-
-
-
education (1)
-
Europe
-
Southern Europe
-
Italy
-
Sicily Italy
-
Mount Etna (2)
-
-
-
-
Western Europe
-
France
-
Auvergne (1)
-
Puy-de-Dome France
-
Chaine des Puys (1)
-
-
-
-
-
igneous rocks
-
volcanic rocks
-
pyroclastics (1)
-
-
-
land use (1)
-
lava (1)
-
Oceania
-
Polynesia
-
Hawaii
-
Hawaii County Hawaii
-
Hawaii Island
-
Kilauea (1)
-
-
-
-
-
-
remote sensing (2)
-
roads (1)
-
United States
-
Hawaii
-
Hawaii County Hawaii
-
Hawaii Island
-
Kilauea (1)
-
-
-
-
-
volcanology (1)
-
Products and dynamics of lava-snow explosions: The 16 March 2017 explosion at Mount Etna, Italy
HOTSAT: a multiplatform system for the thermal monitoring of volcanic activity using satellite data
Abstract The HOTSAT multiplatform system for the analysis of infrared data from satellites provides a framework that allows the detection of volcanic hotspots and an output of their associated radiative power. This multiplatform system can operate on both Moderate Resolution Imaging Spectroradiometer and Spinning Enhanced Visible and Infrared Imager data. The new version of the system is now implemented on graphics processing units and its interface is available on the internet under restricted access conditions. Combining the estimation of time-varying discharge rates using HOTSAT with the MAGFLOW physics-based model to simulate lava flow paths resulted in the first operational system in which satellite observations drive the modelling of lava flow emplacement. This allows the timely definition of the parameters and maps essential for hazard assessment, including the propagation time of lava flows and the maximum run-out distance. The system was first used in an operational context during the paroxysmal episode at Mt Etna on 12–13 January 2011, when we produced real-time predictions of the areas likely to be inundated by lava flows while the eruption was still ongoing. This allowed key at-risk areas to be rapidly and appropriately identified.
Conclusion: recommendations and findings of the RED SEED working group
Abstract RED SEED stands for Risk Evaluation, Detection and Simulation during Effusive Eruption Disasters, and combines stakeholders from the remote sensing, modelling and response communities with experience in tracking volcanic effusive events. The group first met during a three day-long workshop held in Clermont Ferrand (France) between 28 and 30 May 2013. During each day, presentations were given reviewing the state of the art in terms of (a) volcano hot spot detection and parameterization, (b) operational satellite-based hot spot detection systems, (c) lava flow modelling and (d) response protocols during effusive crises. At the end of each presentation set, the four groups retreated to discuss and report on requirements for a truly integrated and operational response that satisfactorily combines remote sensors, modellers and responders during an effusive crisis. The results of collating the final reports, and follow-up discussions that have been on-going since the workshop, are given here. We can reduce our discussions to four main findings. (1) Hot spot detection tools are operational and capable of providing effusive eruption onset notice within 15 min. (2) Spectral radiance metrics can also be provided with high degrees of confidence. However, if we are to achieve a truly global system, more local receiving stations need to be installed with hot spot detection and data processing modules running on-site and in real time. (3) Models are operational, but need real-time input of reliable time-averaged discharge rate data and regular updates of digital elevation models if they are to be effective; the latter can be provided by the radar/photogrammetry community. (4) Information needs to be provided in an agreed and standard format following an ensemble approach and using models that have been validated and recognized as trustworthy by the responding authorities. All of this requires a sophisticated and centralized data collection, distribution and reporting hub that is based on a philosophy of joint ownership and mutual trust. While the next chapter carries out an exercise to explore the viability of the last point, the detailed recommendations behind these findings are detailed here.
Testing a geographical information system for damage and evacuation assessment during an effusive volcanic crisis
Abstract Using two hypothetical effusive events in the Chaîne des Puys (Auvergne, France), we tested two geographical information systems (GISs) set up to allow loss assessment during an effusive crisis. The first was a local system that drew on all immediately available data for population, land use, communications, utility and building type. The second was an experimental add-on to the Global Disaster Alert and Coordination System (GDACS) global warning system maintained by the Joint Research Centre (JRC) that draws information from open-access global data. After defining lava-flow model source terms (vent location, effusion rate, lava chemistry, temperature, crystallinity and vesicularity), we ran all available lava-flow emplacement models to produce a projection for the likelihood of impact for all pixels within the GIS. Next, inundation maps and damage reports for impacted zones were produced, with those produced by both the local system and by GDACS being in good agreement. The exercise identified several shortcomings of the systems, but also indicated that the generation of a GDACS-type global response system for effusive crises that uses rapid-response model projections for lava inundation driven by real-time satellite hotspot detection – and open-access datasets – is within the current capabilities of the community.