- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
GeoRef Subject
-
all geography including DSDP/ODP Sites and Legs
-
United States
-
Illinois (1)
-
Iowa (1)
-
Midwest (1)
-
Mississippi Valley
-
Upper Mississippi Valley (1)
-
-
Utah
-
Arches National Park (1)
-
-
Wisconsin (1)
-
-
-
commodities
-
metal ores
-
lead-zinc deposits (1)
-
-
mineral deposits, genesis (1)
-
-
elements, isotopes
-
carbon
-
C-13/C-12 (1)
-
-
isotope ratios (1)
-
isotopes
-
stable isotopes
-
C-13/C-12 (1)
-
O-18/O-16 (1)
-
S-34/S-32 (1)
-
-
-
oxygen
-
O-18/O-16 (1)
-
-
sulfur
-
S-34/S-32 (1)
-
-
-
geochronology methods
-
U/Pb (1)
-
-
geologic age
-
Mesozoic
-
Cretaceous
-
Lower Cretaceous
-
Albian
-
lower Albian (1)
-
-
Aptian (1)
-
Cedar Mountain Formation (1)
-
-
-
-
-
minerals
-
carbonates (1)
-
sulfides (1)
-
-
Primary terms
-
carbon
-
C-13/C-12 (1)
-
-
diagenesis (1)
-
economic geology (1)
-
isotopes
-
stable isotopes
-
C-13/C-12 (1)
-
O-18/O-16 (1)
-
S-34/S-32 (1)
-
-
-
Mesozoic
-
Cretaceous
-
Lower Cretaceous
-
Albian
-
lower Albian (1)
-
-
Aptian (1)
-
Cedar Mountain Formation (1)
-
-
-
-
metal ores
-
lead-zinc deposits (1)
-
-
mineral deposits, genesis (1)
-
oxygen
-
O-18/O-16 (1)
-
-
paleoclimatology (1)
-
paragenesis (1)
-
sedimentary structures
-
secondary structures
-
concretions (1)
-
-
-
sulfur
-
S-34/S-32 (1)
-
-
United States
-
Illinois (1)
-
Iowa (1)
-
Midwest (1)
-
Mississippi Valley
-
Upper Mississippi Valley (1)
-
-
Utah
-
Arches National Park (1)
-
-
Wisconsin (1)
-
-
-
sedimentary structures
-
sedimentary structures
-
secondary structures
-
concretions (1)
-
-
-
-
soils
-
paleosols (1)
-
Multiproxy strategy for determining palaeoclimate parameters in the Ruby Ranch Member of the Cedar Mountain Formation
Abstract A multiproxy approach for evaluating palaeoclimate parameters in deep-time can result in improvements to inter-related factors affecting palaeohydrology. Here we utilize diverse geochemical tools to improve palaeoclimate estimates for the Cedar Mountain Formation (CMF). Prior research utilized stable carbon and oxygen isotopes to develop chemostratigraphic correlations to the late Aptian–early Albian, hypothesized aridity during a positive carbon isotope excursion (CIE) and estimated p CO 2 through this event. This study refines estimates using petrographical analyses, bulk geochemical proxies for mean annual precipitation (MAP) and clumped isotope palaeothermometry. MAP rates range from 736 to 1042 mm a −1 with a slight decrease during the hypothesized aridity event. We interpret warm-biased temperatures (with an average of 32.9°C) that do not vary significantly through the study section. Carbonate nodules are likely to have precipitated in highly evaporative conditions as indicated by the presence of dolomite. Utilizing a simple Rayleigh fractionation model and two estimates of δ 18 O of water, we suggest that evaporation of 2–57% is necessary to result in an enriched end member δ 18 O w . These data suggest that an increase in aridity is a result of lower MAP rates and greater evaporation during seasonal extremes. Lastly, revised p CO 2 calculations suggest overestimates but indicate a shift towards greater concentrations during the positive CIE.
Abstract Stable isotope analyses of a siderite-cemented siltstone from the Cenomanian Bastion Ridge Formation, Axel Heiberg Island, Canada, produce a range of δ 18 O values from −21.9 to −18.4‰ Vienna Pee Dee Belemnite (VPDB), and δ 13 C values ranging from 2.0 to 4.4‰ VPDB. A meteoric siderite line of −18.95 ± 0.33‰ VPDB is calculated from siderite cements of the authigenic component. At estimated palaeolatitude of 68–72° N and palaeotemperature range from 12.6 to 13.7°C, the calculated δ 18 O range of palaeoprecipitation is −23.3 to −23.0‰ Vienna Standard Mean Ocean Water (VSMOW). This result is compatible with other published meteoric water δ 18 O datasets from Cretaceous Arctic studies, but is near the lower end of the range of estimated δ 18 O values. The modern δ 18 O empirical relationship of Dansgaard and Earth System models simulating meteoric δ 18 O values does not yield results for palaeopolar regions that match proxy δ 18 O datasets. Orographic effects of contemporaneous mountain belts and seasonal biases in groundwater recharge have been proposed to explain this paradox regarding depleted meteoric water δ 18 O values from proxy data in greenhouse worlds. Evidence for local to regional orographic effects and alpine snowmelt biasing groundwater recharge is lacking for the Sverdrup Basin deposits, further indicating that the Dansgaard relationship does not apply to ancient greenhouse worlds.
Abstract This paper presents breakthroughs in the chronostratigraphy of the heretofore poorly constrained Yellow Cat Member of the Cedar Mountain Formation, which is an important record of terrestrial environments, ecosystems and global change in the ancient North American Cordilleran foreland. Zircon populations from 10 stratigraphic horizons in the Yellow Cat Member yield youngest single-grain ages ranging from 142.5 ± 2.7 to 133.7 ± 2.7 Ma (Berriasian–late Valanginian); those from one mudstone palaeosol yield a robust Concordia Age of 136.3 ± 1.3 (Valanginian). Additionally, a new palynoflora – one of a few to be published from the Cedar Mountain Formation – is assigned to the middle Berriasian to early Hauterivian stages, based on the presence of Foraminisporis wonthaggiensis and Trilobosporites sp. cf. T. canadensis , and the absence of F . asymmetricus , Appendicisporites spp. and angiosperms. Furthermore, these chronostratigraphic data allow us to interpret part of the so-called ‘Weissert Event’ C-isotope excursion (Valanginian) in a new C-isotope profile through a palaeosol-bearing alluvial succession in the Yellow Cat Member. This research extends a firm understanding of the formation further back into the Early Cretaceous than was the case previously (except for ostracod biostratigraphy) and sets the stage for future advancements.
Use of multiple oxygen isotope proxies for elucidating Arctic Cretaceous palaeo-hydrology
Abstract Stable oxygen isotope analysis of siderite and dinosaur tooth enamel phosphate from the Campanian–Maastrichtian Prince Creek Formation, Alaska, USA, are analysed to determine the palaeohydrology of the ancient Colville Basin north of the Ancestral Brooks Range. δ 18 O of freshwater siderites relative to V-PDB ranges between −14.86 and −16.21‰. Dinosaur tooth enamel δ 18 O from three different sites (Kikak–Tegoseak, Pediomys Point, Liscomb) range between +3.9‰ and +10.2.0‰. δ 18 O meteoric water are calculated from δ 18 O siderite that formed at seasonal temperatures ranging from −2 to 14.5 °C, with a mean annual temperature of 6.3 °C. At 6.3 °C, the δ 18 O w calculated from siderite ranged between −22.23 and −20.89‰ V-SMOW. Ingested water compositions are estimated from dinosaur teeth assuming body temperatures of 37 °C and local relative humidity of 77.5%, resulting in values ranging from −28.7 to −20.4‰ V-SMOW, suggesting consumption of meteoric water and orographically depleted runoff from the Brooks Range. The ranges in calculated δ 18 O meteoric water are compatible between the two proxies, and are mutually corroborating evidence of extremely 18 O-depleted precipitation at high latitudes during the Late Cretaceous relative to those generated using general circulation models. This depletion is proposed to result from increased rainout effects from an intensified hydrological cycle, which probably played a role in sustaining polar warmth. Supplementary material: Parameters used for generation of equations compared to Kohn (1996) can be found at http://www.geolsoc.org.uk/SUP18642