- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
GeoRef Subject
-
all geography including DSDP/ODP Sites and Legs
-
Australasia
-
Australia
-
Western Australia (2)
-
-
-
Europe
-
Western Europe
-
Scandinavia
-
Finland (1)
-
-
-
-
-
commodities
-
metal ores
-
copper ores (1)
-
gold ores (1)
-
nickel ores (1)
-
-
mineral deposits, genesis (1)
-
-
geologic age
-
Precambrian
-
Archean (1)
-
-
-
Primary terms
-
Australasia
-
Australia
-
Western Australia (2)
-
-
-
data processing (2)
-
education (1)
-
Europe
-
Western Europe
-
Scandinavia
-
Finland (1)
-
-
-
-
faults (1)
-
geophysical methods (2)
-
geophysics (1)
-
metal ores
-
copper ores (1)
-
gold ores (1)
-
nickel ores (1)
-
-
mineral deposits, genesis (1)
-
Precambrian
-
Archean (1)
-
-
sedimentary rocks
-
clastic rocks
-
sandstone (1)
-
-
-
structural geology (2)
-
-
sedimentary rocks
-
sedimentary rocks
-
clastic rocks
-
sandstone (1)
-
-
-
Kernel method for gravity forward simulation in implicit probabilistic geologic modeling
Uncertainty quantification of geologic model parameters in 3D gravity inversion by Hessian-informed Markov chain Monte Carlo
Open AR-Sandbox: A haptic interface for geoscience education and outreach
Abstract The spatial relationship between different rock types and relevant structural features is an important aspect in the characterization of ore-forming systems. Our knowledge about this geological architecture is often captured in 3D structural geological models. Multiple methods exist to generate these models, but one important problem remains: structural models often contain significant uncertainties. In recent years, several approaches have been developed to consider uncertainties in geological prior parameters that are used to create these models through the use of stochastic simulation methods. However, a disadvantage of these methods is that there is no guarantee that each simulated model is geologically reasonable – and that it forms a valid representation in the light of additional data (e.g. geophysical measurements). We address these shortcomings here with an approach for the integration of structural geological and geophysical data into a framework that explicitly considers model uncertainties. We combine existing implicit structural modelling methods with novel developments in probabilistic programming in a Bayesian framework. In an application of these concepts to a gold-bearing greenstone belt in Western Australia, we show that we are able to significantly reduce uncertainties in the final model by additional data integration. Although the final question always remains whether a predicted model suite is a suitable representation of accuracy or not, we conclude that our application of a Bayesian framework provides a novel quantitative approach to addressing uncertainty and optimization of model parameters. Supplementary material: Trace plots for selected parameters and plots of calculated Geweke statistics are available at https://doi.org/10.6084/m9.figshare.c.3899719
Structural geologic modeling as an inference problem: A Bayesian perspective
Abstract Existing three-dimensional (3-D) geologic systems are well adapted to high data-density environments, such as at the mine scale where abundant drill core exists, or in basins where 3-D seismic provides stratigraphie constraints but are poorly adapted to regional geologic problems. There are three areas where improvements in the 3-D workflow need to be made: (1) the handling of uncertainty, (2) the model-building algorithms themselves, and (3) the interface with geophysical inversion. All 3-D models are underconstrained, and at the regional scale this is especially critical for choosing modeling strategies. The practice of only producing a single model ignores the huge uncertainties that underlie model-building processes, and underpins the difficulty in providing meaningful information to end-users about the inherent risk involved in applying the model to solve geologic problems. Future studies need to recognize this and focus on the characterization of model uncertainty, spatially and in terms of geologic features, and produce plausible model suites, rather than single models with unknown validity. The most promising systems for understanding uncertainty use implicit algorithms because they allow the inclusion of some geologic knowledge, for example, age relationships of faults and onlap-offlap relationships. Unfortunately, existing implicit algorithms belie their origins as basin or mine modeling systems because they lack inclusion of normal structural criteria, such as cleavages, lineations, and recognition of polydeformation, all of which are primary tools for the field geologist that is making geologic maps in structurally complex areas. One area of future research will be to establish generalized structural geologic rules that can be built into the modeling process. Finally, and this probably represents the biggest challenge, there is the need for geologic meaning to be maintained during the model-building processes. Current data flows consist of the construction of complex 3-D geologic models that incorporate geologic and geophysical data as well as the prior experience of the modeler, via their interpretation choices. These inputs are used to create a geometric model, which is then transformed into a petrophysical model prior to geophysical inversion. All of the underlying geologic rules are then ignored during the geophysical inversion process. Examples exist that demonstrate that the loss of geologic meaning between geologic and geophysical modeling can be at least partially overcome by increased use of uncertainty characteristics in the workflow.