Update search
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
Format
Article Type
Journal
Publisher
GeoRef Subject
-
all geography including DSDP/ODP Sites and Legs
-
Africa
-
North Africa
-
Atlas Mountains
-
Moroccan Atlas Mountains
-
High Atlas (1)
-
-
-
Morocco
-
Moroccan Atlas Mountains
-
High Atlas (1)
-
-
Tarfaya Morocco (2)
-
-
-
-
Mediterranean region (1)
-
-
elements, isotopes
-
carbon
-
C-13/C-12 (2)
-
-
isotope ratios (2)
-
isotopes
-
stable isotopes
-
C-13/C-12 (2)
-
O-18/O-16 (1)
-
-
-
oxygen
-
O-18/O-16 (1)
-
-
-
fossils
-
Invertebrata
-
Mollusca
-
Cephalopoda
-
Ammonoidea (2)
-
-
-
Protista
-
Foraminifera (2)
-
-
-
microfossils (2)
-
Plantae
-
algae
-
nannofossils (1)
-
-
-
-
geologic age
-
Mesozoic
-
Cretaceous
-
Upper Cretaceous
-
Cenomanian (1)
-
-
-
Jurassic
-
Lower Jurassic (1)
-
-
-
-
Primary terms
-
Africa
-
North Africa
-
Atlas Mountains
-
Moroccan Atlas Mountains
-
High Atlas (1)
-
-
-
Morocco
-
Moroccan Atlas Mountains
-
High Atlas (1)
-
-
Tarfaya Morocco (2)
-
-
-
-
carbon
-
C-13/C-12 (2)
-
-
Invertebrata
-
Mollusca
-
Cephalopoda
-
Ammonoidea (2)
-
-
-
Protista
-
Foraminifera (2)
-
-
-
isotopes
-
stable isotopes
-
C-13/C-12 (2)
-
O-18/O-16 (1)
-
-
-
Mediterranean region (1)
-
Mesozoic
-
Cretaceous
-
Upper Cretaceous
-
Cenomanian (1)
-
-
-
Jurassic
-
Lower Jurassic (1)
-
-
-
oxygen
-
O-18/O-16 (1)
-
-
paleoclimatology (1)
-
paleogeography (1)
-
Plantae
-
algae
-
nannofossils (1)
-
-
-
sea-level changes (2)
-
sedimentary rocks
-
carbonate rocks
-
limestone (2)
-
-
clastic rocks
-
marl (1)
-
-
-
-
sedimentary rocks
-
sedimentary rocks
-
carbonate rocks
-
limestone (2)
-
-
clastic rocks
-
marl (1)
-
-
-
GeoRef Categories
Era and Period
Epoch and Age
Book Series
Date
Availability
Complete archive of late Turonian to early Campanian sedimentary deposition in newly drilled cores from the Tarfaya Basin, SW Morocco Available to Purchase
Analyses biostratigraphiques dans le Lias de la bordure sud de la Téthys méditerranéenne: l’exemple de la frange méridionale du Haut-Atlas central (Maroc) Available to Purchase
Palaeomagnetic results from Upper Triassic red-beds and CAMP lavas of the Argana Basin, Morocco Available to Purchase
Abstract The continental Argana Basin of Morocco is the trans-Atlantic counterpart of the extensively studied Fundy, Hartford and Newark basins in north-eastern America, that have provided the astrochronologically tuned geomagnetic polarity timescale (GPTS) for the late Triassic and earliest Jurassic. The Argana red-bed successions also show astronomically driven time control, which allowed trans-Atlantic correlations and revealed that the interval towards volcanism of the Central Atlantic Magmatic Province (CAMP) is without any significant hiatuses. Here, we present palaeomagnetic results from the cyclically bedded upper Triassic red-beds and the intercalated volcanics associated with CAMP. Our composite Argana section comprises an interval of 3.5–4.0 Ma, but its magnetostratigraphic pattern does not allow a straightforward correlation to the Newark GPTS. The continental red-bed deposits of the Bigoudine Formation demonstrate a dominant magnetic overprint that could only be removed at temperatures above 600 °C. We suggest that this overprint could have been caused by a period of (Jurassic, c . 170 Ma) magmatism that caused pervasive overprinting of the Triassic palaeomagnetic signal. Correlations between the sections in the Tazantoute region are not straightforward, hampered by the presence of a magmatic sill. The CAMP lava sequences of Tazantoute are all of normal polarity and record secular variation in a manner that agrees with short-lived pulses of CAMP activity in Morocco. Our results indicate that the sedimentary successions of the Argana Basin have the potential to evaluate the Newark GPTS, but that detailed palaeomagnetic analyses of more suitable sections with long(er) cyclostratigraphic records are required.