- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
GeoRef Subject
-
all geography including DSDP/ODP Sites and Legs
-
Africa
-
Afar (3)
-
East Africa
-
Afar Depression (4)
-
Djibouti (1)
-
Eritrea (2)
-
Ethiopia (4)
-
Ethiopian Rift (3)
-
-
East African Rift (4)
-
Nubian Shield (1)
-
-
Asia
-
Arabian Peninsula
-
Oman (1)
-
Saudi Arabia
-
Hail Saudi Arabia (1)
-
-
Yemen (1)
-
-
-
Indian Ocean
-
Arabian Sea
-
Gulf of Aden (3)
-
-
Red Sea
-
Red Sea Rift (1)
-
-
-
North America
-
Rio Grande Rift (1)
-
-
-
geologic age
-
Cenozoic
-
Quaternary
-
Holocene (1)
-
-
Tertiary
-
Neogene
-
Miocene (1)
-
-
-
-
-
igneous rocks
-
igneous rocks
-
volcanic rocks
-
basalts
-
flood basalts (1)
-
-
-
-
-
Primary terms
-
Africa
-
Afar (3)
-
East Africa
-
Afar Depression (4)
-
Djibouti (1)
-
Eritrea (2)
-
Ethiopia (4)
-
Ethiopian Rift (3)
-
-
East African Rift (4)
-
Nubian Shield (1)
-
-
Asia
-
Arabian Peninsula
-
Oman (1)
-
Saudi Arabia
-
Hail Saudi Arabia (1)
-
-
Yemen (1)
-
-
-
Cenozoic
-
Quaternary
-
Holocene (1)
-
-
Tertiary
-
Neogene
-
Miocene (1)
-
-
-
-
crust (4)
-
deformation (1)
-
earthquakes (7)
-
faults (6)
-
geodesy (2)
-
geophysical methods (2)
-
igneous rocks
-
volcanic rocks
-
basalts
-
flood basalts (1)
-
-
-
-
Indian Ocean
-
Arabian Sea
-
Gulf of Aden (3)
-
-
Red Sea
-
Red Sea Rift (1)
-
-
-
intrusions (3)
-
magmas (3)
-
mantle (1)
-
North America
-
Rio Grande Rift (1)
-
-
ocean basins (1)
-
ocean floors (1)
-
plate tectonics (7)
-
remote sensing (1)
-
sea-floor spreading (4)
-
sedimentation (1)
-
seismology (1)
-
tectonics (4)
-
Transverse tectonics control on the Late Quaternary development of the Central Main Ethiopian Rift
Strike-slip tectonics during rift linkage
Earthquake Clustering and Energy Release of the African–Arabian Rift System
Probabilistic Seismic‐Hazard Assessment for Eritrea
Local Earthquake Magnitude Scale and b ‐Value for the Danakil Region of Northern Afar
Abstract Temporary broadband seismic networks deployed from 2007 to 2011 around the Afar triple junction of the East African Rift System provide insights into seismicity patterns of the actively deforming crust around the 1.86 km 3 impounded lake system behind the Tendaho dam. The observed seismicity correlates well with the active magmatic centres around central Afar. The area around the dam site is characterized by a network of intersecting NNE- and NW-trending faults. Seismicity clusters observed in the specified time interval indicate that both fault sets are active and are potential sources of seismogenic hazards. The dam neighbourhood is naturally active and it is a challenge to associate the observed seismic activity to either a change in magmato-tectonic conditions or attribute it to the influence of reservoir load. It is evident that the dam region experiences high levels of seismic and volcano-tectonic unrest, regardless of the origin of the activity. The spatial overlap of narrow zones of crustal seismicity and upper mantle low velocity zones observed in S-wave tomography models suggests that melt production zones guide the distribution of strain during continental rupture. Given its volcanically and seismically active setting, the Tendaho dam site and the surrounding region require continuous monitoring for the safety of downstream populations and development infrastructures in the Afar National Regional State of Ethiopia.
Introduction: Anatomy of rifting: Tectonics and magmatism in continental rifts, oceanic spreading centers, and transforms
Upper mantle structure of the southern Arabian margin: Insights from teleseismic tomography
Magma-induced axial subsidence during final-stage rifting: Implications for the development of seaward-dipping reflectors
The rifting cycle initiates with stress buildup, release as earthquakes and/or magma intrusions/eruptions, and visco-elastic rebound, multiple episodes of which combine to produce the observed, time-averaged rift zone architecture. The aim of our synthesis of current research initiatives into continental rifting-to-rupture processes is to quantify the time and length scales of faulting and magmatism that produce the time-averaged rift structures imaged in active, failed rifts and passive margins worldwide. We compare and contrast seismic and geodetic strain patterns during discrete, intense rifting episodes in magmatic and amagmatic sectors of the East African rift zone that span early- to late-stage rifting. We also examine the longer term rifting cycle and its relation to changing far-field extension directions with examples from the Rio Grande rift zone and other cratonic rifts. Over time periods of millions of years, periods of rotating regional stress fields are marked by a lull in magmatic activity and a temporary halt to tectonic rift opening. Admittedly, rifting cycle comparisons are biased by the short time scale of global seismic and geodetic measurements, which span a small fraction of the 10 2 –10 5 year rifting cycle. Within rift sectors with upper crustal magma chambers beneath the central rift valley (e.g., Main Ethiopian, Afar, and Eastern or Gregory rifts) seismic energy release accounts for a small fraction of the deformation; most of the strain is accommodated by magma intrusion and slow-slip. Magma intrusion processes appear to decrease the time period between rifting episodes, effectively accelerating the rift to rupture process. Thus, the inter-seismic period in rift zones with crustal magma reservoirs is strongly dependent upon the magma replenishment cycle. This comparison also demonstrates that intense rifting events, both magmatic and amagmatic, produce the long-term fault displacements and maintain the along-axis rift architecture through repeated episodes. The magmatic events in particular accommodate centuries of inter-seismic strain, implying that inter-seismic-plate opening rates in late stage rifts should be extrapolated to the past with caution.
The Miocene–Holocene East African Rift in Ethiopia is unique worldwide because it subaerially exposes the transition between continental rifting and seafloor spreading within a young continental flood basalt province. As such, it is an ideal study locale for continental breakup processes and hotspot tectonism. Here, we review the results of a recent multidisciplinary, multi-institutional effort to understand geological processes in the region: the Ethiopia Afar Geoscientific Lithospheric Experiment (EAGLE). In 2001–2003, dense broadband seismological networks probed the structure of the upper mantle, while controlled-source wide-angle profiles illuminated both along-axis and across-rift crustal structure of the Main Ethiopian Rift. These seismic experiments, complemented by gravity and magnetotelluric surveys, provide important constraints on variations in rift structure, deformation mechanisms, and melt distribution prior to breakup. Quaternary magmatic zones at the surface within the rift are underlain by high-velocity, dense gabbroic intrusions that accommodate extension without marked crustal thinning. A magnetotelluric study illuminated partial melt in the Ethiopian crust, consistent with an overarching hypothesis of magma-assisted rifting. Mantle tomographic images reveal an ~500-km-wide low-velocity zone at ≥75 km depth in the upper mantle that extends from close to the eastern edge of the Main Ethiopian Rift westward beneath the uplifted and flood basalt–capped NW Ethiopian Plateau. The low-velocity zone does not interact simply with the Miocene–Holocene (rifting-related) base of lithosphere topography, but it provides an abundant source of partially molten material that assists extension of the seismically and volcanically active Main Ethiopian Rift to the present day.