- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
GeoRef Subject
-
all geography including DSDP/ODP Sites and Legs
-
Arctic region (1)
-
Asia
-
Far East
-
China
-
Xizang China (2)
-
-
-
Himalayas
-
Lesser Himalayas (1)
-
-
Indian Peninsula
-
Bhutan (2)
-
India
-
Sikkim India (2)
-
West Bengal India
-
Darjeeling India (1)
-
-
-
Nepal (4)
-
-
Main Central Thrust (2)
-
Tibetan Plateau (1)
-
-
Blue Mountains (1)
-
Caledonides (1)
-
Canada
-
Eastern Canada
-
Newfoundland and Labrador
-
Newfoundland (1)
-
-
-
Nunavut (1)
-
Western Canada
-
British Columbia
-
Atlin British Columbia (1)
-
-
-
-
Europe
-
Western Europe
-
Scandinavia (1)
-
-
-
Mexico
-
Sierra Madre Occidental (1)
-
-
North America
-
Canadian Shield
-
Churchill Province
-
Cape Smith fold belt (1)
-
-
Grenville Province
-
Central Gneiss Belt (1)
-
-
Slave Province (1)
-
Superior Province
-
Abitibi Belt (1)
-
-
-
Lake Superior region (1)
-
Rocky Mountains
-
U. S. Rocky Mountains
-
Bitterroot Range
-
Beaverhead Mountains (1)
-
-
Tendoy Range (1)
-
-
-
-
Pacific Coast (1)
-
South America
-
Amazonian Craton (1)
-
-
United States
-
Arizona (1)
-
Cheyenne Belt (1)
-
Idaho
-
Snake River plain (1)
-
-
Idaho Batholith (1)
-
Lewis and Clark Lineament (1)
-
Montana
-
Beaverhead County Montana
-
Tendoy Range (1)
-
-
-
New Mexico
-
Picuris Range (1)
-
-
Southwestern U.S. (1)
-
U. S. Rocky Mountains
-
Bitterroot Range
-
Beaverhead Mountains (1)
-
-
Tendoy Range (1)
-
-
Wyoming Province (2)
-
Yakima fold belt (1)
-
Yavapai Province (1)
-
-
-
commodities
-
fluorspar deposits (1)
-
metal ores
-
molybdenum ores (1)
-
tungsten ores (1)
-
uranium ores (1)
-
-
-
elements, isotopes
-
carbon
-
C-13/C-12 (1)
-
-
isotope ratios (3)
-
isotopes
-
radioactive isotopes
-
U-238/Pb-206 (1)
-
-
stable isotopes
-
C-13/C-12 (1)
-
Sr-87/Sr-86 (1)
-
U-238/Pb-206 (1)
-
-
-
Lu/Hf (1)
-
metals
-
actinides
-
uranium
-
U-238/Pb-206 (1)
-
-
-
alkaline earth metals
-
strontium
-
Sr-87/Sr-86 (1)
-
-
-
iron (1)
-
lead
-
U-238/Pb-206 (1)
-
-
rare earths (1)
-
-
-
geochronology methods
-
(U-Th)/He (1)
-
Ar/Ar (10)
-
fission-track dating (1)
-
Lu/Hf (1)
-
paleomagnetism (2)
-
Pb/Pb (1)
-
thermochronology (3)
-
U/Pb (9)
-
U/Th/Pb (4)
-
-
geologic age
-
Cenozoic
-
Tertiary
-
Neogene
-
Miocene
-
middle Miocene (1)
-
upper Miocene (1)
-
-
Pliocene (1)
-
-
Paleogene
-
Eocene
-
upper Eocene (1)
-
-
Oligocene (1)
-
-
-
-
Mesozoic
-
Cretaceous
-
Middle Cretaceous (1)
-
-
-
Paleozoic
-
Cambrian (1)
-
Carboniferous
-
Lower Carboniferous (1)
-
-
Devonian (2)
-
Ordovician (2)
-
Silurian (2)
-
-
Phanerozoic (1)
-
Precambrian
-
Archean
-
Eoarchean (1)
-
Mesoarchean (1)
-
Neoarchean (2)
-
Paleoarchean (1)
-
-
Hadean (1)
-
Stillwater Complex (1)
-
upper Precambrian
-
Proterozoic
-
Mesoproterozoic (4)
-
Neoproterozoic
-
Ediacaran (1)
-
-
Paleoproterozoic (6)
-
-
-
Vadito Group (1)
-
-
-
igneous rocks
-
igneous rocks
-
plutonic rocks
-
anorthosite (2)
-
granites
-
charnockite (2)
-
leucogranite (3)
-
-
monzonites
-
mangerite (2)
-
-
pegmatite (1)
-
ultramafics
-
peridotites
-
dunite (1)
-
-
-
-
volcanic rocks
-
rhyolites (2)
-
-
-
ophiolite (1)
-
-
metamorphic rocks
-
metamorphic rocks
-
gneisses
-
orthogneiss (3)
-
paragneiss (1)
-
-
listwanite (1)
-
metaigneous rocks
-
serpentinite (1)
-
-
metasedimentary rocks
-
paragneiss (1)
-
-
metasomatic rocks
-
serpentinite (1)
-
-
metavolcanic rocks (1)
-
quartzites (1)
-
schists (1)
-
-
ophiolite (1)
-
-
minerals
-
carbonates
-
magnesite (1)
-
-
phosphates
-
monazite (4)
-
-
silicates
-
chain silicates
-
amphibole group
-
clinoamphibole
-
hornblende (1)
-
-
-
-
framework silicates
-
silica minerals
-
quartz (1)
-
-
-
orthosilicates
-
nesosilicates
-
garnet group (1)
-
zircon group
-
zircon (9)
-
-
-
-
sheet silicates
-
mica group
-
biotite (1)
-
muscovite (5)
-
-
talc (1)
-
-
-
-
Primary terms
-
absolute age (13)
-
Arctic region (1)
-
Asia
-
Far East
-
China
-
Xizang China (2)
-
-
-
Himalayas
-
Lesser Himalayas (1)
-
-
Indian Peninsula
-
Bhutan (2)
-
India
-
Sikkim India (2)
-
West Bengal India
-
Darjeeling India (1)
-
-
-
Nepal (4)
-
-
Main Central Thrust (2)
-
Tibetan Plateau (1)
-
-
Canada
-
Eastern Canada
-
Newfoundland and Labrador
-
Newfoundland (1)
-
-
-
Nunavut (1)
-
Western Canada
-
British Columbia
-
Atlin British Columbia (1)
-
-
-
-
carbon
-
C-13/C-12 (1)
-
-
Cenozoic
-
Tertiary
-
Neogene
-
Miocene
-
middle Miocene (1)
-
upper Miocene (1)
-
-
Pliocene (1)
-
-
Paleogene
-
Eocene
-
upper Eocene (1)
-
-
Oligocene (1)
-
-
-
-
crust (8)
-
deformation (10)
-
Europe
-
Western Europe
-
Scandinavia (1)
-
-
-
faults (7)
-
fluorspar deposits (1)
-
folds (1)
-
foliation (2)
-
geochemistry (2)
-
geochronology (1)
-
geophysical methods (1)
-
glacial geology (1)
-
igneous rocks
-
plutonic rocks
-
anorthosite (2)
-
granites
-
charnockite (2)
-
leucogranite (3)
-
-
monzonites
-
mangerite (2)
-
-
pegmatite (1)
-
ultramafics
-
peridotites
-
dunite (1)
-
-
-
-
volcanic rocks
-
rhyolites (2)
-
-
-
inclusions
-
fluid inclusions (1)
-
-
intrusions (5)
-
isotopes
-
radioactive isotopes
-
U-238/Pb-206 (1)
-
-
stable isotopes
-
C-13/C-12 (1)
-
Sr-87/Sr-86 (1)
-
U-238/Pb-206 (1)
-
-
-
magmas (2)
-
mantle (1)
-
Mesozoic
-
Cretaceous
-
Middle Cretaceous (1)
-
-
-
metal ores
-
molybdenum ores (1)
-
tungsten ores (1)
-
uranium ores (1)
-
-
metals
-
actinides
-
uranium
-
U-238/Pb-206 (1)
-
-
-
alkaline earth metals
-
strontium
-
Sr-87/Sr-86 (1)
-
-
-
iron (1)
-
lead
-
U-238/Pb-206 (1)
-
-
rare earths (1)
-
-
metamorphic rocks
-
gneisses
-
orthogneiss (3)
-
paragneiss (1)
-
-
listwanite (1)
-
metaigneous rocks
-
serpentinite (1)
-
-
metasedimentary rocks
-
paragneiss (1)
-
-
metasomatic rocks
-
serpentinite (1)
-
-
metavolcanic rocks (1)
-
quartzites (1)
-
schists (1)
-
-
metamorphism (8)
-
metasomatism (1)
-
Mexico
-
Sierra Madre Occidental (1)
-
-
North America
-
Canadian Shield
-
Churchill Province
-
Cape Smith fold belt (1)
-
-
Grenville Province
-
Central Gneiss Belt (1)
-
-
Slave Province (1)
-
Superior Province
-
Abitibi Belt (1)
-
-
-
Lake Superior region (1)
-
Rocky Mountains
-
U. S. Rocky Mountains
-
Bitterroot Range
-
Beaverhead Mountains (1)
-
-
Tendoy Range (1)
-
-
-
-
orogeny (7)
-
Pacific Coast (1)
-
paleoclimatology (1)
-
paleogeography (3)
-
paleomagnetism (2)
-
Paleozoic
-
Cambrian (1)
-
Carboniferous
-
Lower Carboniferous (1)
-
-
Devonian (2)
-
Ordovician (2)
-
Silurian (2)
-
-
Phanerozoic (1)
-
plate tectonics (13)
-
Precambrian
-
Archean
-
Eoarchean (1)
-
Mesoarchean (1)
-
Neoarchean (2)
-
Paleoarchean (1)
-
-
Hadean (1)
-
Stillwater Complex (1)
-
upper Precambrian
-
Proterozoic
-
Mesoproterozoic (4)
-
Neoproterozoic
-
Ediacaran (1)
-
-
Paleoproterozoic (6)
-
-
-
Vadito Group (1)
-
-
sea-level changes (1)
-
sedimentary petrology (1)
-
sedimentary rocks
-
clastic rocks
-
arenite
-
quartz arenite (1)
-
-
sandstone (1)
-
-
-
sedimentation (3)
-
South America
-
Amazonian Craton (1)
-
-
structural analysis (1)
-
tectonics
-
neotectonics (1)
-
-
United States
-
Arizona (1)
-
Cheyenne Belt (1)
-
Idaho
-
Snake River plain (1)
-
-
Idaho Batholith (1)
-
Lewis and Clark Lineament (1)
-
Montana
-
Beaverhead County Montana
-
Tendoy Range (1)
-
-
-
New Mexico
-
Picuris Range (1)
-
-
Southwestern U.S. (1)
-
U. S. Rocky Mountains
-
Bitterroot Range
-
Beaverhead Mountains (1)
-
-
Tendoy Range (1)
-
-
Wyoming Province (2)
-
Yakima fold belt (1)
-
Yavapai Province (1)
-
-
weathering (1)
-
-
sedimentary rocks
-
sedimentary rocks
-
clastic rocks
-
arenite
-
quartz arenite (1)
-
-
sandstone (1)
-
-
-
siliciclastics (1)
-
-
sediments
-
siliciclastics (1)
-
The Neoarchean, a turning point for geodynamic and magmatic processes within the Superior craton?
ABSTRACT The Neoarchean is generally considered to have been the final era of major crust formation and may have been characterized by the onset of modern plate tectonics. The Neoarchean may also have been the time interval during which subduction processes prevailed and became global. Evidence from individual cratons around the world suggests that this transition in geodynamic processes may have included diachronous and episodic major changes (i.e., turning points) and a more gradual evolution at the global scale, possibly largely driven by the secular cooling of the mantle and increasing stability of the lithosphere. The Superior craton, Canada, is the largest and best-preserved Archean craton in the world, making it an ideal location in which to investigate the occurrence (or absence) of turning points in the Neoarchean. This contribution examines the changes in geodynamic and magmatic processes that occurred during the Neoarchean, using geochemical data and new insights garnered from isotopic surveys from the southern part of the Superior craton. We summarize current understanding of the evolution of the youngest (southern) part of the Superior craton that led to the stabilization (cratonization) of this continental lithosphere and how this evolution aligns with local and global geodynamic processes.
ABSTRACT Rapid midcrustal cooling (>10 °C/m.y.) is typical of Phanerozoic orogens, but it is less commonly reported from Precambrian orogenic belts. Abundant new 40 Ar/ 39 Ar (predominantly plateau) dates reveal a period of late, rapid cooling following slow postpeak metamorphic cooling during the evolution of the Paleoproterozoic Cape Smith belt, a greenschist- to amphibolite-facies foreland thrust belt in the ca. 1.83–1.76 Ga Trans-Hudson orogen. We conducted 40 Ar/ 39 Ar step-heating analyses on biotite, hornblende, and/or muscovite from 38 samples sourced from the thrust belt and its footwall basement, the Archean Superior craton. The 40 Ar/ 39 Ar dates from the Cape Smith belt and re-equilibrated Superior craton ranged ca. 1948–1708 Ma in biotite, ca. 1801–1697 Ma in muscovite, and ca. 1764–1694 Ma in hornblende. Of these, ~70% were ca. 1740–1700 Ma plateau dates, which we interpret as cooling ages following Cape Smith belt metamorphism; gas-release spectra of older outlying dates exhibit characteristics of excess Ar. Following the metamorphic thermal peak, the belt cooled at slow rates of up to ~1 °C/m.y. until ca. 1740 Ma. Concordant biotite, muscovite, and hornblende cooling dates of ca. 1740–1700 Ma require fast, late cooling of the belt (≥4 °C/m.y.) through upper midcrustal levels (~500–300 °C), and they allow for very rapid cooling rates (≤200 °C/m.y.). Accelerated cooling rates may have been triggered by uplift in response to detachment of lower crust or subcontinental lithosphere, facilitated by the postcollisional relaxation of isotherms and structural uplift in basement-involved folds. In Superior craton basement, ca. 2704–2667 Ma 40 Ar/ 39 Ar hornblende plateau dates reflect undisturbed cooling ages following Neoarchean metamorphism, whereas younger and wide-ranging 40 Ar/ 39 Ar biotite dates (ca. 2532–1743 Ma) with variable gas-release spectra suggest spatially heterogeneous degrees of Ar resetting in biotite during Cape Smith belt tectonism. Partially reset 40 Ar/ 39 Ar biotite dates in the Superior craton up to ~100 km south of the belt suggest that the pre-erosional thrust wedge extended at least that far south, and that it imposed a widespread low-temperature (<300 °C) and/or short-lived thermal overprint on the footwall basement. Integration of multimineral 40 Ar/ 39 Ar data with structural and metamorphic constraints for the Cape Smith belt indicates that modern-style postcollisional exhumation and rapid cooling were viable processes during the middle Paleoproterozoic.
ABSTRACT An accretionary tectonic model for the Mesoproterozoic ca. 1500–1340 Ma tectonic evolution of the southern Laurentian margin is presented. The tectonic model incorporates key observations about the nature and timing of Mesoproterozoic deposition, magmatism, regional metamorphism, and deformation across the 5000-km-long southern Laurentian margin. This time period was one of transition in the supercontinent cycle and occurred between the breakup of Columbia and the formation of Rodinia, and the southern Laurentian margin was a significant component of a much greater accretionary margin extending into Baltica and Amazonia and possibly parts of Antarctica and Australia. However, fundamental questions and contradictions remain in our understanding of the tectonic evolution of Laurentia and paleogeography during this time interval.
ABSTRACT The discovery of multiple deformed and metamorphosed sedimentary successions in southwestern Laurentia that have depositional ages between ca. 1.50 and 1.45 Ga marked a turning point in our understanding of the Mesoproterozoic tectonic evolution of the continent and its interactions with formerly adjacent cratons. Detrital zircon U-Pb ages from metasedimentary strata and igneous U-Pb zircon ages from interbedded metavolcanic rocks in Arizona and New Mexico provide unequivocal evidence for ca. 1.50–1.45 Ga deposition and burial, followed by ca. 1.45 and younger deformation, metamorphism, and plutonism. These events reflect regional shortening and crustal thickening that are most consistent with convergent to collisional orogenesis—the Mesoproterozoic Picuris orogeny—in southwestern Laurentia. Similar metasedimentary successions documented in the midcontinent of the United States and in eastern Canada help to establish ca. 1.45 Ga orogenesis as a continent-scale phenomenon associated with a complex and evolving convergent margin along southern Laurentia. Metasedimentary successions of similar age are also exposed across ~5000 km of the western Laurentian margin and contain distinctive 1.6–1.5 Ga detrital zircon populations that are globally rare except in select cratonic provinces in Australia and Antarctica. The recognition of these distinctive detrital zircon ages provides a transient record of plate interactions prior to breakup of Nuna or Columbia ca. 1.45 Ga and provides key constraints on global plate reconstructions.
The jagged western edge of Laurentia: The role of inherited rifted lithospheric structure in subsequent tectonism in the Pacific Northwest
ABSTRACT The rifted Precambrian margin of western Laurentia is hypothesized to have consisted of a series of ~330°-oriented rift segments and ~060°-oriented transform segments. One difficulty with this idea is that the 87 Sr/ 86 Sr i = 0.706 isopleth, which is inferred to coincide with the trace of this rifted margin, is oriented approximately N-S along the western edge of the Idaho batholith and E-W in northern Idaho; the transition between the N-S– and E-W–oriented segments occurs near Orofino, Idaho. We present new paleomagnetic and geochronologic evidence that indicates that the area around Orofino, Idaho, has rotated ~30° clockwise since ca. 85 Ma. Consequently, we interpret the current N-S–oriented margin as originally oriented ~330°, consistent with a Precambrian rift segment, and the E-W margin as originally oriented ~060°, consistent with a transform segment. Independent geochemical and seismic evidence corroborates this interpretation of rotation of Blue Mountains terranes and adjacent Laurentian block. Left-lateral motion along the Lewis and Clark zone during Late Cretaceous–Paleogene time likely accommodated this rotation. The clockwise rotation partially explains the presence of the Columbia embayment, as Laurentian lithosphere was located further west. Restoration of the rotation results in a reconstructed Neoproterozoic margin with a distinct promontory and embayment, and it constrains the rifting direction as SW oriented. The rigid Precambrian rift-transform corner created a transpressional syntaxis during middle Cretaceous deformation associated with the western Idaho and Ahsahka shear zones. During the late Miocene to present, the Precambrian rift-transform corner has acted as a fulcrum, with the Blue Mountains terranes as the lever arm. This motion also explains the paired fan-shaped contractional deformation of the Yakima fold-and-thrust belt and fan-shaped extensional deformation in the Hells Canyon extensional province.
ABSTRACT The Archean Wyoming Province formed and subsequently grew through a combination of magmatic and tectonic processes from ca. 4.0 to 2.5 Ga. Turning points in crustal evolution are recorded in four distinct phases of magmatism: (1) Early mafic magmatism formed a primordial crust between 4.0 and 3.6 Ga and began the formation of a lithospheric keel below the Wyoming Province in response to active plume-like mantle upwelling in a “stagnant lid”–type tectonic environment; (2) earliest sialic crust formed in the Paleoarchean by melting of hydrated mafic crust to produce rocks of the tonalite-trondhjemite-granodiorite (TTG) suite from ca. 3.6 to 2.9 Ga, with a major crust-forming event at 3.3–3.2 Ga that was probably associated with a transition to plate tectonics by ca. 3.5 Ga; (3) extensive calc-alkalic magmatism occurred during the Mesoarchean and Neoarchean (ca. 2.85–2.6 Ga), forming plutons that are compositionally equivalent to modern-day continental arc plutons; and (4) a late stage of crustal differentiation occurred through intracrustal melting processes ca. 2.6–2.4 Ga. Periods of tectonic quiescence are recognized in the development of stable platform supracrustal sequences (e.g., orthoquartzites, pelitic schists, banded iron formation, metabasites, and marbles) between ca. 3.0 and 2.80 Ga. Evidence for late Archean tectonic thickening of the Wyoming Province through horizontal tectonics and lateral accretion was likely associated with processes similar to modern-style convergent-margin plate tectonics. Although the province is surrounded by Paleoproterozoic orogenic zones, no post-Archean penetrative deformation or calc-alkalic magmatism affected the Wyoming Province prior to the Laramide orogeny. Its Archean crustal evolution produced a strong cratonic continental nucleus prior to incorporation within Laurentia. Distinct lithologic suites, isotopic compositions, and ages provide essential reference markers for models of assembly and breakup of the long-lived Laurentian supercontinent.
Petrologic constraints on the origin of Proterozoic ferroan granites of the Laurentian margin
ABSTRACT Ferroan granite is a characteristic rock type of the Laurentian margin. It is commonly associated with anorthosite and related rocks. Ferroan granites are strongly enriched in iron, are alkalic to alkali-calcic, and are generally metaluminous. These geochemical characteristics reflect their tholeiitic parental magma source and relatively reducing and anhydrous conditions of crystallization. Their compositions distinguish them from arc magmas, which are magnesian and calcic to calc-alkalic. Ferroan granite magmas are hot, which promotes partial melting of their crustal wall rocks. Assimilation of these silica-rich and peraluminous melts drives the resulting magmas to higher silica and aluminum saturation values. Where Proterozoic ferroan granites intrude Archean crust, their mantle component is readily identified isotopically, but this is more difficult where they intrude relatively juvenile crust. Ferroan granite forms in tectonic environments that allow partial melts of tholeiitic mantle to pond and differentiate at or near the base of the crust. Phanerozoic examples occur in plume settings, such as the Snake River Plain and Yellowstone, or under certain conditions involving slab rollback, such as those that formed the Cenozoic topaz rhyolites of the western United States or ferroan rhyolites of the Sierra Madre Occidental. It is possible that the long-lived supercontinent Nuna-Rodinia, of which Laurentia was a part, formed an insulating lid that raised underlying mantle temperatures and created a unique environment that enabled emplacement of large volumes of mafic melt at the base of the crust. Ascent of felsic differentiates accompanied by variable crustal assimilation may have created large volumes of Proterozoic ferroan granite and related rocks.
Late Paleoproterozoic to early Mesoproterozoic deposition of quartz arenites across southern Laurentia
ABSTRACT Supermature siliciclastic sequences were deposited between 1.64 Ga and 1.59 Ga over a broad swath of southern Laurentia in the Archean, Penokean, Yavapai, and Mazatzal Provinces. These siliciclastic sequences are notable for their extreme mineralogical and chemical maturity, being devoid of detrital feldspar and ferromagnesian minerals, containing the clay mineral kaolinite (or its metamorphic equivalent, pyrophyllite), and having a chemical index of alteration >95. Such maturity is the result of a perfect confluence of tectonic and climatic conditions, including a stable continental crust with low topographic relief (the Archean, Penokean, and Yavapai Provinces ca. 1.70 Ga), a warm humid climate, an elevated level of atmospheric CO 2 , and relatively acidic pore fluids in the critical zone. The weathered detritus was transported and deposited by southward-flowing streams across the Archean, Penokean, and Yavapai Provinces, ultimately to be deposited on 1.66 Ga volcanic and volcaniclastic rocks in the Mazatzal continental arc along the southern margin of Laurentia.
ABSTRACT The Neoarchean marked an important turning point in the evolution of Earth when cratonization processes resulted in progressive amalgamation of relatively small crustal blocks into larger and thicker continental masses, which now comprise the ancient core of our continents. Although evidence of cratonization is preserved in the ancient continental cores, the conditions under which this geodynamic process operated and the nature of the involved crustal blocks are far from resolved. In the Superior craton, deep-crustal fault systems developed during the terminal stage of Neoarchean cratonization, as indicated by the cratonwide growth of relatively small, narrow, syn-to-late tectonic (ca. 2680–2670 Ma) sedimentary basins. The terrigenous debris eroded from the uplifted tectono-magmatic source regions was deposited as polymictic conglomerate and sand successions in fluvial-dominated basins. The composition of the sedimentary rocks in these unique basins, therefore, offers a unique record of crustal sources and depositional settings, with implications for the geodynamic processes that formed the world’s largest preserved craton. Here, we compare the geochemical compositions of sandstone samples from six sedimentary basins across the Abitibi greenstone belt and relate them to their mode of deposition, prevailing provenance, and geodynamic setting during crustal growth and craton stabilization. The sandstones represent first-cycle sediment that is poorly sorted and compositionally very immature, with variable Al 2 O 3 /TiO 2 ratios and index of chemical variability values >1 (average of 1.36), reflecting a large proportion of framework silicate grains. The sandstones display chemical index of alteration values between 45 and 64 (average of 53), indicating that the detritus was eroded from source regions that experienced a very low degree of chemical weathering. This likely reflects a high-relief and active tectonic setting that could facilitate rapid erosion and uplift with a short transit time of the detritus from source to deposition. Multi-element variation diagrams and rare earth element patterns reveal that the lithological control on sandstone composition was dominated by older (>2695 Ma) pretectonic tonalite-trondhjemite-granodiorite and greenstone belt rocks. The sandstone units display large variations in the proportions of felsic, mafic, and ultramafic end-member contributions as a consequence of provenance variability. However, an average sandstone composition of ~65% felsic, ~30% mafic, and ~5% komatiite was observed across the basins. This observation is in agreement with recent models that predict the composition of the Neoarchean emerged continental crust for North America and supports the presence of a felsic-dominated Archean crust. The high proportion of felsic rocks in the upper crust requires continuous influx of H 2 O into the mantle and is best explained by subduction-related processes. In such a scenario, the detritus of the fluvial sandstones is best described as being controlled by uplifted and accreted continental arcs mainly composed of tonalite-trondhjemite-granodiorite and greenstone belt rocks.
ABSTRACT The Mesoproterozoic southeastern margin of Laurentia, which consisted primarily of the ca. 1.5–1.35 Ga Granite-Rhyolite Province, was extensively reworked during ca. 1.3–0.9 Ga phases of the Grenville orogenic cycle. Questions remain for much of southeastern Laurentia regarding the transition from the Granite-Rhyolite Province to Grenville orogenic cycle, and for potential collisional interaction with Amazonia, due to Paleozoic sedimentary cover or tectonic reworking. Basement rocks sampled by drill core in the east-central United States include 1.5–1.35 Ga magmatic rocks, some overprinted by late Geon 10 (Ottawan) orogenesis, which are the most outboard evidence of Granite-Rhyolite Province crust. Newly recognized 1.35–1.30 Ga (pre-Elzevirian) granitic orthogneisses within the Mars Hill terrane of southeastern Laurentia (1) expand the along-strike distribution of the earliest crustal age components of the Grenville orogenic cycle in Appalachian basement inliers; (2) contain Geon 19–16 inherited zircons; and (3) were metamorphosed during late Ottawan to Rigolet tectonism. Paragneisses enveloping the Geon 13 orthogneisses are dominated by Geon 19–16 and Geon 13–12 detrital zircons overgrown by Geon 10–9 metamorphic zircon. The zircon age systematics require the paragneiss protoliths to be younger than orthogneiss protoliths and be partly sourced from the latter. Orthogneisses and paragneisses have Pb isotope compositions that overlap those of south-central Appalachian and southwest Amazonia basement, both of which are distinct from Laurentian Pb isotope compositions. The boundary between Amazonian (southern Appalachian) and Laurentian (northern Appalachian) Pb isotope compositions is thus a terrane boundary, with Geon 13 magmatic rocks being the youngest common crustal component. In comparison, the Paraguá block of the southwestern margin of Amazonia consists of a Geon 19–16 basement complex intruded by the batholithic-scale Geon 13 San Ignacio granite suite. The latter also contains inherited Geon 19–16 zircon and has Pb isotope compositions that help define the Amazonian trend. The correspondence of magmatic, inherited, and detrital ages and similarity in Pb isotope compositions are consistent with an origin for the exotic/orphaned Mars Hill terrane as an outboard sliver of the Paraguá block that developed before Grenvillian orogenesis (Geons 12–9). Manifestations of the latter are concentrated around the margins of the Paraguá block in the Sunsás (southwest), Nova Brasilândia (north), and Aguapeí belts (east). The Sunsás belt is a mostly low-grade metasedimentary belt with only minor Geon 10–9 magmatism and no Geon 12 or 11 magmatism, thus distinguishing it from the Mars Hill terrane. The Arequipa-Antofalla terrane, exposed in Andes basement inliers, lies outboard of the Sunsás belt and has Pb isotope and geochronologic characteristics that permit a correlation with the Mars Hill terrane and a paleogeographic position between the Mars Hill terrane and the Sunsás belt. The histories of the Mars Hill terrane, Arequipa-Antofalla terrane, and Paraguá block merge during Geons 10–9 and final collisional orogenesis between southeast Laurentia and southwestern Amazonia.
ABSTRACT Mesoproterozoic crust is widely exposed in the Grenville Province portion of northeastern Laurentia, where it is interpreted as an assemblage of two continental-arc segments separated by a composite arc belt (Quebecia) with island-arc remnants. A synthesis of the geologic context, types, and geochemical patterns of 1.5–1.35 Ga granitoids reveals a regional distribution in each segment, with dioritic to granitic plutonism variably associated with arc-related volcano-sedimentary belts in the south and inboard monzonitic to granitic plutonism in the north. In addition, belts of dioritic to granitic orthogneisses occupy intermediate positions in Quebecia and in the west. The inboard granites are consistently old in all segments (1.5–1.45 Ga), but the preserved volcano-sedimentary belts are older in the east and in Quebecia (1.5–1.45 Ga) and younger in the west (1.39? and 1.36 Ga), while the belts of orthogneisses show a large spread of ages at 1.45–1.37 Ga. Granitoids in the volcano-sedimentary belts and the orthogneisses include magnesian, calcic to calc-alkalic components to ferroan, alkali-calcic components. In contrast, the inboard plutons are dominantly ferroan and alkali-calcic to alkalic in the continental-arc segments, where they are locally associated with anorthosite-mangerite-charnockite-granite (AMCG) suites. Collectively, the different types of granitoid magmatism can be linked to an active margin, with subduction under northeastern Laurentia, involving arc building, arc rifting, back-arc opening and inboard extension, and amalgamation processes variably operating at different parts of the margin and at different times. In addition, the data provide a basis for comparison with other parts of the eastern to southwestern Laurentian margin in the 1.5–1.35 Ga time frame.
ABSTRACT Ediacaran sediments record the termination of Cryogenian “snowball Earth” glaciations, preserve the first occurrences of macroscopic metazoans, and contain one of the largest known negative δ 13 C excursions (the Shuram-Wonoka). The rock record for the transition between the Proterozoic and Phanerozoic in North America is also physically distinct, with much of the continent characterized by a wide variety of mostly crystalline Proterozoic and Archean rocks overlain by Lower Paleozoic shallow-marine sediments. Here, we present quantitative macrostratigraphic summaries of rock quantity and type using a new comprehensive compilation of Ediacaran geological successions in North America. In keeping with previous results that have identified early Paleozoic burial of the “Great Unconformity” as a major transition in the rock record, we find that the Ediacaran System has greatly reduced areal extent and volume in comparison to the Cambrian and most younger Phanerozoic systems. The closest quantitative analogue to the Ediacaran System in North America is the Permian–Triassic interval, deposited during the culminating assembly and early rifting phases of the supercontinent Pangea. The Shuram-Wonoka carbon isotope excursion occurs against the backdrop of the largest increase in carbonate and total rock volume observed in the Ediacaran. The putatively global Gaskiers glaciation (ca. 580–579 Ma), by contrast, has little quantitative expression in these data. Although the importance of Ediacaran time is often framed in the context of glaciation, biological evolution, and geochemical perturbations, the quantitative expressions of rock area, volume, and lithology in the geologic record clearly demark the late Ediacaran to early Cambrian as the most dramatic transition in at least the past 635 m.y. The extent to which the timing and nature of this transition are reflected globally remains to be determined, but we hypothesize that the large expansion in the extent and volume of sedimentation within the Ediacaran, particularly among carbonates, and again from the Ediacaran to the Cambrian, documented here over ~17% of Earth’s present-day continental area, provides important insights into the drivers of biogeochemical and biological evolution at the dawn of animal life.
ABSTRACT The Montana metasedimentary terrane (MMT) forms the NW margin of the Wyoming Province in present coordinates. The MMT preserves a multistage Paleoproterozoic tectonic history that clarifies the position of the Wyoming craton during assembly and breakup of the Precambrian Kenorland supercontinent and the subsequent assembly of Laurentia’s Precambrian basement. In SW Montana, burial, metamorphism, deformation, and partial melting attributed to orogeny were superimposed on Archean quartzofeldspathic orthogneisses and paragneisses at ca. 2.55 and ca. 2.45 Ga during the Tendoy and Beaverhead orogenies, respectively. Subsequent stability was disrupted at 2.06 Ga, when probable rift-related mafic dikes and sills intruded the older gneisses. The MMT was profoundly reworked by tectonism again as a consequence of the ca. 1.8–1.7 Ga Big Sky orogeny, during which juvenile metasupracrustal suites characteristic of an arc (the Little Belt arc) and back-arc basin collapsed against the Wyoming craton continental margin. The northern margin of the Wyoming craton occupied an upper-plate position south of a south-dipping subduction zone at that time. Lithostratigraphic correlations link the southeastern Wyoming and southern Superior cratons at ca. 2.45 Ga with the Wyoming craton joined to the Kenorland supercontinent in an inverted position relative to present coordinates. This places the MMT along an open supercontinental margin, in a position permissive of collision or accretion and orogeny during a time when other parts of Kenorland were experiencing mafic volcanism and incipient rifting. The ca. 2.45 Ga Beaverhead orogeny in the MMT was most likely the consequence of collision with one of the Rae family of cratons, which share a history of tectonism at this time. The Beaverhead collision enveloped the Wyoming craton in a larger continental landmass and led to the 2.45–2.06 Ga period of tectonic quiescence in the MMT. Breakup of Kenorland occurred ca. 2.2–2.0 Ga. In the MMT, this is expressed by the 2.06 Ga mafic dikes and sills that crosscut older gneisses. The Wyoming craton would have been an island continent within the Manikewan Ocean after rifting from Kenorland on one side and from the Rae family craton on the MMT side. Subduction beneath the MMT in the Wyoming craton started no later than 1.87 Ga and was active until 1.79 Ga. This opened a back-arc basin and created the Little Belt arc to the north of the craton, contributed to the demise of the Manikewan Ocean, and culminated in collision along the Big Sky orogen starting ca. 1.78 Ga. Collision across the Trans-Hudson orogen in Canada occurred during a slightly earlier period. Thus, docking of the Wyoming craton reflects the final stage in the closure of the Manikewan Ocean and the amalgamation of the Archean cratons of Laurentia.
Geoelectric constraints on the Precambrian assembly and architecture of southern Laurentia
ABSTRACT Using images from an updated and expanded three-dimensional electrical conductivity synthesis model for the contiguous United States (CONUS), we highlight the key continent-scale geoelectric structures that are associated with the Precambrian assembly of southern Laurentia. Conductivity anomalies are associated with the Trans-Hudson orogen, the Penokean suture, the ca. 1.8–1.7 Ga Cheyenne belt and Spirit Lake tectonic zone, and the Grenville suture zone; the geophysical characteristics of these structures indicate that the associated accretionary events involved the closure of ancient ocean basins along discrete, large-scale structures. In contrast, we observe no large-scale conductivity anomalies through the portion of southern Laurentia that is generally viewed as composed of late Paleoproterozoic–early Mesoproterozoic accretionary crust. The lack of through-going conductors places constraints on the structure, petrology, and geodynamic history of crustal growth in southern Laurentia during that time period. Overall, our model highlights the enigmatic nature of the concealed Precambrian basement of much of southern Laurentia, as it in some places supports and in other places challenges prevailing models of Laurentian assembly. The revised CONUS electrical conductivity model thus provides important constraints for testing new models of Precambrian tectonism in this region.
ABSTRACT The Neoproterozoic to Cambrian rifting history of Laurentia resulted in hyperextension along large segments of its Paleozoic margins, which created a complex paleogeography that included isolated continental fragments and exhumed continental lithospheric mantle. This peri-Laurentian paleogeography had a profound effect on the duration and nature of the Paleozoic collisional history and associated magmatism of Laurentia. During the initial collisions, peri-Laurentia was situated in a lower-plate setting, and there was commonly a significant time lag between the entrance of the leading edge of peri-Laurentia crust in the trench and the arrival of the trailing, coherent Laurentian landmass. The final Cambrian assembly of Gondwana was followed by a global plate reorganization that resulted in Cambrian (515–505 Ma) subduction initiation outboard of Laurentia, West Gondwana, and Baltica. Accretion of infant and mature intra-oceanic arc terranes along the Appalachian-Caledonian margin of the Iapetus Ocean started at the end of the Cambrian during the Taconic-Grampian orogenic cycle and continued until the ca. 430–426 Ma onset of the Scandian-Salinic collision between Laurentia and Baltica, Ganderia, and East Avalonia, which created the Laurussian continent and closed nearly all vestiges of the Iapetus Ocean. Closure of the Iapetus Ocean in the Appalachians was followed by the Devonian Acadian and Neoacadian orogenic cycles, which were due to dextral oblique accretion of West Avalonia, Meguma, and the Suwannee terranes following the Pridolian to Lochkovian closure of the Acadian seaway and subsequent outboard subduction of the Rheic Ocean beneath Laurentia. Continued underthrusting of Baltica and Avalonia beneath Laurentia during the Devonian indicates that convergence continued between Laurentia and Baltica and Avalonia, which, at least in part, may have been related to the motions of Laurentia relative to its converging elements. Cambrian to Ordovician subduction zones formed earlier in the oceanic realm between Laurentia and Baltica and started to enter the Arctic realm of Laurentia by the Late Ordovician, which resulted in sinistral oblique interaction of the Franklinian margin with encroaching terranes of peri-Laurentian, intra-oceanic, and Baltican provenance. Any intervening seaways were closed during the Middle to Late Devonian Ellesmerian orogeny. Exotic terranes such as Pearya and Arctic Alaska became stranded in the Arctic realm of Laurentia, while other terranes such as Alexander and Eastern Klamath were translated further into the Panthalassa Ocean. The Middle/Late Devonian to Mississippian Antler orogeny along the Cordilleran margin of Laurentia records the first interaction with an outboard arc terrane built upon a composite block preserved in the Northern Sierra and Eastern Klamath terranes. The Carboniferous–Permian Alleghanian-Ouachita orogenic cycle was due to closure of the vestiges of the Rheic Ocean and assembly of Pangea. The narrow, continental transform margin of the Ouachita embayment of southern Laurentia had escaped accretion by outboard terranes until the Mississippian, when it collided with an outboard arc terrane.
Linking the Pinware, Baraboo, and Picuris orogens: Recognition of a trans-Laurentian ca. 1520–1340 Ma orogenic belt
ABSTRACT It is proposed that the Pinware orogen of eastern Canada, the Baraboo orogen of the midcontinent, and the Picuris orogen of the southwestern United States delineate a previously unrecognized, ~5000-km-long, ca. 1520–1340 Ma trans-Laurentian orogenic belt. All three orogenic provinces are characterized by Mesoproterozoic sedimentation, magmatism, metamorphism, and deformation—the hallmarks of a tectonically active plate margin. Tectonism was diachronous, with the earliest stages beginning ca. 1520 Ma in eastern Canada and ca. 1500 Ma in the southwest United States. Magmatic zircon age distributions are dominated by Mesoproterozoic, unimodal to multimodal age peaks between ca. 1500 and 1340 Ma. The onset of magmatism in the Pinware and Baraboo orogens was ca. 1520 Ma, and onset for the Picuris orogen was ca. 1485 Ma. Detrital zircon age distributions within each orogenic province yield maximum depositional ages between ca. 1570 and 1450 Ma. Minimum depositional ages generally fall between ca. 1500 and 1435 Ma, as constrained by crosscutting intrusions, metatuff layers, or the age of subsequent metamorphism. Metamorphic mineral growth ages from zircon, garnet, and monazite yield peak ages between ca. 1500 and 1350 Ma and tend to be older in the Pinware and Baraboo orogens than in the Picuris orogen. The 40 Ar/ 39 Ar cooling ages for hornblende, muscovite, and biotite yield significant peak ages between ca. 1500 and 1350 Ma in the Baraboo and Picuris orogens. We propose that the Pinware-Baraboo-Picuris orogen formed in a complex, diachronous, convergent margin setting along the southern edge of Laurentia from ca. 1520 to 1340 Ma.
ABSTRACT Upper Cambrian through Middle Ordovician sedimentary strata of the Marathon/Solitario Basin (west Texas), which were folded and thrust-faulted during late Paleozoic Appalachian-Ouachita orogenesis, preserve evidence of the pre-Pangean history of the central southern Laurentian margin. New detrital zircon analyses reported here are from three Marathon Basin/Solitario formations: the upper Cambrian Dagger Flat Sandstone; the Lower Ordovician Marathon Formation, including the Rodrigues Tank Sandstone Member; and the Middle Ordovician Ft. Peña Formation. The far-southwestern outcrops of those Iapetus margin strata are within the Solitario dome (Presidio and Brewster Counties, Texas). Solitario zircon U/Pb geochronological results (laser ablation–inductively coupled plasma–mass spectrometry [LA-ICP-MS], sensitive high-resolution ion microprobe [SHRIMP]) expand the record of Cryogenian rifting as the Cuyania terrane separated from Laurentia. We evaluated these new data along with earlier geochronological and geochemical results from rift-related lava clasts in Lower–Middle Ordovician sedimentary subaqueous debris-flow deposits in the northwestern Marathon Basin. Deepening of the Iapetus seaway near the Laurentian margin (late Cambrian–Middle Ordovician) stimulated headward erosion of drainages, reflected in the systematic north-northwestward shift in zircon provenance from the west Texas Grenvillian and Southern Granite-Rhyolite Provinces to Yavapai-Mazatzal and Cheyenne Belt sources. The Cuyania rifted terrane underwent subduction at the western Gondwanan margin of the Iapetus Ocean in mid-Ordovician time (486 ± 7 Ma to 463 ± 4 Ma), and the resulting volcanism in the Famatina complex (Argentina) was most intense from ca. 472 to 468 Ma. Magmatic zircons from Ft. Peña bentonitic layers have identical U/Pb (488–468 Ma) and biostratigraphic (Darriwilian) ages to those from Famatinian bentonites at Talacasto (470 ± 5 Ma) in the Precordillera of Cuyania. Geologically constrained paleomagnetic reconstructions for 470 Ma depict the proximity of the Famatina arc, the rifted Cuyania terrane, and southern Laurentia at low southern latitudes (equator to ~30°S). These first U/Pb geochronological data from the Marathon/Solitario depocenter of western Iapetus appear to be compatible with such a configuration and can serve as test data for emerging tectonic interpretations.
ABSTRACT The Ordovician Bronson Hill arc and Silurian–Devonian Central Maine basin are integral tectonic elements of the northern Appalachian Mountains (USA). However, understanding the evolution of, and the relationship between, these two domains has been challenging due to complex field relationships, overprinting associated with multiple phases of Paleozoic orogenesis, and a paucity of geochronologic dates. To constrain the nature of this boundary, and the tectonic evolution of the northern Appalachians, we present U-Pb zircon dates from 24 samples in the context of detailed mapping in northern New Hampshire and western Maine. Collectively, the new geochronology and mapping results constrain the timing of magmatism, sedimentation, metamorphism, and deformation. The Bronson Hill arc formed on Gondwana-derived basement and experienced prolonged magmatic activity before and after a ca. 460 Ma reversal in subduction polarity following its accretion to Laurentia in the Middle Ordovician Taconic orogeny. Local Silurian deformation between ca. 441 and 434 Ma may have been related to the last stages of the Taconic orogeny or the Late Ordovician to early Silurian Salinic orogeny. Silurian Central Maine basin units are dominated by local, arc-derived zircon grains, suggestive of a convergent margin setting. Devonian Central Maine basin units contain progressively larger proportions of older, outboard, and basement-derived zircon, associated with the onset of the collisional Early Devonian Acadian orogeny at ca. 410 Ma. Both the Early Devonian Acadian and Middle Devonian to early Carboniferous Neoacadian orogenies were associated with protracted amphibolite-facies metamorphism and magmatism, the latter potentially compatible with the hypothesized Acadian altiplano orogenic plateau. The final configuration of the Jefferson dome formed during the Carboniferous via normal faulting, possibly related to diapirism and/or ductile thinning and extrusion. We interpret the boundary between the Bronson Hill arc and the Central Maine basin to be a pre-Acadian normal fault on which dip was later reversed by dome-stage tectonism. This implies that the classic mantled gneiss domes of the Bronson Hill anticlinorium formed relatively late, during or after the Neoacadian orogeny, and that this process may have separated the once-contiguous Central Maine and Connecticut Valley basins.
Hit-and-run model for Cretaceous–Paleogene tectonism along the western margin of Laurentia
ABSTRACT The North American Cordillera experienced major contractional deformation during the Cretaceous–Paleogene, which is commonly attributed to normal subduction transitioning to shallow-slab subduction. We provide details of an alternative hit-and-run model, wherein the Insular superterrane obliquely collided with the North American margin from 100 to 85 Ma (the “hit”), followed by northward translation during continued oblique convergence with North America from 85 to 55 Ma (the “run”). This model assumes that the paleomagnetic evidence from the accreted terranes of the northern North American Cordillera, indicating up to thousands of kilometers of northward movement primarily between ca. 85 and 55 Ma, is correct. The hit-and-run model also incorporates new advances: (1) A worldwide plate reorganization occurred ca. 105–100 Ma; and (2) multiple subducted slabs have characterized subduction systems of the North American Cordillera since ca. 120 Ma. Finally, we explicitly address along-strike variations, such as the role of the preexisting rifted Precambrian margin and Permian–Triassic truncation of North America, in margin-parallel movement along western North America. The 100–85 Ma “hit” phase of the orogeny was characterized by dextral transpressional deformation that occurred simultaneously in the magmatic arcs of Idaho, northern Nevada, eastern California, and the Peninsular Ranges of southern California and northern Mexico. The hit phase also recorded incipient plateau formation, foreland block uplifts in the northern Rocky Mountains, and significant foreland sedimentation in adjacent North America. The transition from “hit” to “run” is hypothesized to have occurred because of the clockwise rotation of a Precambrian promontory in Washington State that was blocking northward translation: This rotation was accommodated by sinistral motion along the Lewis and Clark deformation zone. The 85–55 Ma “run” phase resulted in dextral strike-slip faulting of coastal blocks and significant contractional deformation in adjacent continental North America. The hit-and-run model is consistent with first-order geological and geophysical constraints from the North American Cordillera, and the proposed type of oblique orogeny requires a three-dimensional, time-dependent view of the deformation along an irregular and evolving continental margin.
Transformation of eastern North America from compression to extension in the Permian–Triassic
ABSTRACT The record of Permian–Triassic evolution in eastern North America indicates an important change in the tectonic regime from compression to extension as eastern Laurentia transitioned from the Alleghanian orogeny to continental rifting associated with the breakup of Pangea. The temporal pace (e.g., gradual vs. episodic, diachronous vs. synchronous), the accommodating structures, and the influential processes that characterized this transition provide critical insights into the late Paleozoic evolution of Laurentia and rifted continental margins in general. Connections between the formation of the South Georgia basin and regional cooling of the southernmost Appalachian crystalline rocks, along with the distribution of normal faults and discontinuities in metamorphic grade, indicate extensional collapse of the Alleghanian orogen along an extensive detachment system that was active from ca. 295 to 240 Ma. The 40 Ar/ 39 Ar cooling ages of biotites from low-angle normal shear zones cutting migmatitic gneisses of the southernmost Appalachians are interpreted to document extensional faulting ca. 280 Ma and to provide a snapshot of the prolonged orogenic collapse. The timing, orientation of structures, extent of reactivation, and character of late Alleghanian extension in the central and northern Appalachians provide an orogen-scale framework for this tectonic transition. This contribution focuses on correlations between the beginning of orogenic collapse and the initiation of continental rifting along with the tectonic processes that transformed eastern North America from a convergent to divergent plate boundary following the Alleghanian orogeny.