- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
GeoRef Subject
-
all geography including DSDP/ODP Sites and Legs
-
North America
-
Appalachians
-
Blue Ridge Province (2)
-
Central Appalachians (1)
-
Piedmont (3)
-
Valley and Ridge Province (1)
-
-
-
United States
-
Atlantic Coastal Plain (1)
-
District of Columbia (1)
-
Eastern U.S. (1)
-
Virginia
-
Louisa County Virginia (3)
-
-
-
-
geologic age
-
Mesozoic (1)
-
Paleozoic
-
Cambrian (1)
-
Devonian (1)
-
lower Paleozoic
-
Chopawamsic Formation (1)
-
-
Ordovician (1)
-
Silurian (1)
-
-
-
metamorphic rocks
-
metamorphic rocks
-
amphibolites (1)
-
-
-
Primary terms
-
deformation (3)
-
earthquakes (4)
-
faults (4)
-
folds (2)
-
foliation (1)
-
fractures (1)
-
geophysical methods (2)
-
Mesozoic (1)
-
metamorphic rocks
-
amphibolites (1)
-
-
metamorphism (2)
-
North America
-
Appalachians
-
Blue Ridge Province (2)
-
Central Appalachians (1)
-
Piedmont (3)
-
Valley and Ridge Province (1)
-
-
-
orogeny (1)
-
paleogeography (1)
-
Paleozoic
-
Cambrian (1)
-
Devonian (1)
-
lower Paleozoic
-
Chopawamsic Formation (1)
-
-
Ordovician (1)
-
Silurian (1)
-
-
tectonics
-
neotectonics (2)
-
-
United States
-
Atlantic Coastal Plain (1)
-
District of Columbia (1)
-
Eastern U.S. (1)
-
Virginia
-
Louisa County Virginia (3)
-
-
-
The Mineral, Virginia (USA), earthquake of 23 August 2011 occurred at 6–8 km depth within the allochthonous terranes of the Appalachian Piedmont Province, rupturing an ~N36°E striking reverse fault dipping ~50° southeast. This study used the Interstate Highway 64 seismic reflection profile acquired ~6 km southwest of the hypocenter to examine the structural setting of the earthquake. The profile shows that the 2011 earthquake and its aftershocks are almost entirely within the early Paleozoic Chopawamsic volcanic arc terrane, which is bounded by listric thrust faults dipping 30°–40° southeast that sole out into an ~2-km-thick, strongly reflective zone at 7–12 km depth. Reflectors above and below the southward projection of the 2011 earthquake focal plane do not show evidence for large displacement, and the updip projection of the fault plane does not match either the location or trend of a previously mapped fault or lithologic boundary. The 2011 earthquake thus does not appear to be a simple reactivation of a known Paleozoic thrust fault or a major Mesozoic rift basin-boundary fault. The fault that ruptured appears to be a new fault, a fault with only minor displacement, or to not extend the ~3 km from the aftershock zone to the seismic profile. Although the Paleozoic structures appear to influence the general distribution of seismicity in the area, Central Virginia seismic zone earthquakes have yet to be tied directly to specific fault systems mapped at the surface or imaged on seismic profiles.
Subsurface geologic features of the 2011 central Virginia earthquakes revealed by airborne geophysics
Characterizing geologic features associated with major earthquakes provides insights into mechanisms contributing to fault slip and assists evaluation of seismic hazard. We use high-resolution airborne geophysical data combined with ground sample measurements to image subsurface geologic features associated with the 2011 moment magnitude (M w ) 5.8 central Virginia (USA) intraplate earthquake and its aftershocks. Geologic mapping and magnetic data analyses suggest that the earthquake occurred near a complex juncture of geologic contacts. These contacts also intersect a >60-km-long linear gravity gradient. Distal aftershocks occurred in tight, ~1-km-wide clusters near other obliquely oriented contacts that intersect gravity gradients, in contrast to more linearly distributed seismicity observed at other seismic zones. These data and corresponding models suggest that local density contrasts (manifested as gravity gradients) modified the nearby stress regime in a manner favoring failure. However, along those gradients seismic activity is localized near structural complexities, suggesting a significant contribution from variations in associated rock characteristics such as rheological weakness and/or rock permeability, which may be enhanced in those areas. Regional magnetic data show a broader bend in geologic structures within the Central Virginia seismic zone, suggesting that seismic activity may also be enhanced in other nearby areas with locally increased rheological weaknesses and/or rock permeability. In contrast, away from the M w 5.8 epicenter, geophysical lineaments are nearly continuous for tens of kilometers, especially toward the northeast. Continuity of associated geologic structures probably contributed to efficient propagation of seismic energy in that direction, consistent with moderate to high levels of damage from Louisa County to Washington, D.C., and neighboring communities.
Geologic framework and evidence for neotectonism in the epicentral area of the 2011 Mineral, Virginia, earthquake
The epicenters of the main shock and associated aftershocks of the 2011 moment magnitude, M w 5.8 Mineral, Virginia (USA), earthquake, and the updip projection of the possible fault plane that triggered the quakes, are contained in the areas of 2 adjoining 7.5′ quadrangles in the central Virginia Piedmont. These quadrangles have therefore been the focus of concentrated geologic study in the form of bedrock and surficial mapping and near-surface trenching in order to identify potential seismogenic structures. Bedrock mapping has outlined a series of northeast-southwest–trending lithologic belts that include the Ordovician Chopawamsic and Quantico Formations, the narrow neck of the Late Ordovician Ellisville pluton, and mélange zone III of the Mine Run Complex. The region was affected by at least two ductile deformational events, one in the early Paleozoic that was broadly synchronous with the intrusion of the pluton, and one later in the Paleozoic. The earlier deformation produced the Quantico synclinorium and other regional folds, and the later deformation produced faults with associated high-strain zones. Two of these faults have been trenched at their intersection along the east-dipping eastern contact of the Ellisville neck, near where the causative fault for the earthquake projects to the surface. The trenches have exposed abundant evidence of post-Paleozoic fracturing and faulting, including brecciated quartz-tourmaline veins, slickensided thrust and strike-slip faults, and clay-filled fractures. Fluvial and colluvial gravels that overlie these brittle structures have yielded optically stimulated luminescence ages ranging from ca. 27 to 10 ka. These structures are likely representative of surface features associated with Quaternary earthquakes in the Central Virginia seismic zone.
A billion years of deformation in the central Appalachians: Orogenic processes and products
Abstract The central Appalachians form a classic orogen whose structural architecture developed during episodes of contractional, extensional, and transpressional deformation from the Proterozoic to the Mesozoic. These episodes include components of the Grenville orogenic cycle, the eastern breakup of Rodinia, Appalachian orogenic cycles, the breakup of Pangea, and the opening of the Atlantic Ocean basin. This field trip examines an array of rocks deformed via both ductile and brittle processes from the deep crust to the near-surface environment, and from the Mesoproterozoic to the present day. The trip commences in suspect terranes of the eastern Piedmont in central Virginia, and traverses northwestward across the Appalachian orogen through the thick-skinned Blue Ridge basement terrane, and into the thin-skinned fold-and-thrust belt of the Valley and Ridge geologic province. The traverse covers a range of deformation styles that developed over a vast span of geologic time: from high-grade metamorphic rocks deformed deep within the orogenic hinterland, to sedimentary rocks of the foreland that were folded, faulted, and cleaved in the late Paleozoic, to brittle extensional structures that overprint many of these rocks. Stops include: the damage zone of a major Mesozoic normal fault, composite fabrics in gneiss domes, transpressional mylonites that accommodated orogen-parallel elongation, contractional high-strain zones, and overpressured breccia zones in the Blue Ridge, as well as folds, thrusts, and back thrusts of the Alleghanian foreland.
Geology and neotectonism in the epicentral area of the 2011 M5.8 Mineral, Virginia, earthquake
Abstract This field guide covers a two-day west-to-east transect across the epicentral region of the 2011 M5.8 Mineral, Virginia, earthquake, the largest ever recorded in the Central Virginia seismic zone. The field trip highlights results of recent bedrock and surficial geologic mapping in two adjoining 7.5-min quadrangles, the Ferncliff and the Pendleton, which together encompass the epicenter and most of the 2011–2012 aftershocks. Tectonic history of the region includes early Paleozoic accretion of an island arc (Ordovician Chopawamsic Formation) to Laurentia, intrusion of a granodiorite pluton (Ordovician Ellisville pluton), and formation of a post-Chopawamsic successor basin (Ordovician Quantico Formation), all accompanied by early Paleozoic regional deformation and metamorphism. Local transpressional faulting and retrograde metamorphism occurred in the late Paleozoic, followed by diabase dike intrusion and possible local normal faulting in the early Mesozoic. The overall goal of the bedrock mapping is to determine what existing geologic structures might have been reactivated during the 2011 seismic event, and surficial deposits along the South Anna River are being mapped in order to determine possible neotectonic uplift. In addition to bedrock and surficial studies, we have excavated trenches in an area that contains two late Paleozoic faults and represents the updip projection of the causative fault for the 2011 quake. The trenches reveal faulting that has offset surficial deposits dated as Quaternary in age, as well as numerous other brittle structures that suggest a geologically recent history of neotectonic activity.