- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
GeoRef Subject
-
all geography including DSDP/ODP Sites and Legs
-
Atlantic region (1)
-
Canada
-
Western Canada
-
British Columbia (4)
-
-
-
Cascadia subduction zone (2)
-
Eel River (1)
-
North America (1)
-
Pacific Ocean
-
East Pacific
-
Northeast Pacific
-
Monterey Canyon (1)
-
San Diego Trough (1)
-
-
-
North Pacific
-
Northeast Pacific
-
Monterey Canyon (1)
-
San Diego Trough (1)
-
-
-
-
Queen Charlotte Fault (4)
-
San Andreas Fault (2)
-
United States
-
Alaska (3)
-
Atlantic Coastal Plain (1)
-
California
-
Central California (2)
-
Channel Islands
-
San Clemente Island (1)
-
-
Hosgri Fault (1)
-
Imperial County California (1)
-
Los Angeles County California
-
San Clemente Island (1)
-
-
Riverside County California (1)
-
Salton Sea (1)
-
San Gregorio Fault (1)
-
Southern California (3)
-
-
Lake Tahoe (1)
-
Oregon (1)
-
Walker Lane (1)
-
Washington (1)
-
-
-
commodities
-
petroleum (1)
-
-
elements, isotopes
-
carbon
-
C-13/C-12 (1)
-
-
isotope ratios (1)
-
isotopes
-
stable isotopes
-
C-13/C-12 (1)
-
-
-
-
geologic age
-
Cenozoic
-
Quaternary
-
Holocene
-
upper Holocene (1)
-
-
Pleistocene
-
upper Pleistocene (2)
-
-
upper Quaternary (1)
-
-
Tertiary
-
Neogene (1)
-
-
-
-
metamorphic rocks
-
turbidite (1)
-
-
minerals
-
carbonates (1)
-
-
Primary terms
-
Atlantic region (1)
-
Canada
-
Western Canada
-
British Columbia (4)
-
-
-
carbon
-
C-13/C-12 (1)
-
-
Cenozoic
-
Quaternary
-
Holocene
-
upper Holocene (1)
-
-
Pleistocene
-
upper Pleistocene (2)
-
-
upper Quaternary (1)
-
-
Tertiary
-
Neogene (1)
-
-
-
continental shelf (1)
-
continental slope (2)
-
data processing (1)
-
deformation (4)
-
earthquakes (4)
-
faults (10)
-
folds (1)
-
geophysical methods (10)
-
isotopes
-
stable isotopes
-
C-13/C-12 (1)
-
-
-
marine geology (1)
-
North America (1)
-
ocean floors (6)
-
Pacific Ocean
-
East Pacific
-
Northeast Pacific
-
Monterey Canyon (1)
-
San Diego Trough (1)
-
-
-
North Pacific
-
Northeast Pacific
-
Monterey Canyon (1)
-
San Diego Trough (1)
-
-
-
-
petroleum (1)
-
plate tectonics (3)
-
sea-level changes (3)
-
sedimentary structures
-
seismites (1)
-
-
sedimentation (3)
-
sediments
-
clastic sediments (1)
-
marine sediments (2)
-
-
slope stability (5)
-
stratigraphy (2)
-
tectonics
-
neotectonics (1)
-
-
United States
-
Alaska (3)
-
Atlantic Coastal Plain (1)
-
California
-
Central California (2)
-
Channel Islands
-
San Clemente Island (1)
-
-
Hosgri Fault (1)
-
Imperial County California (1)
-
Los Angeles County California
-
San Clemente Island (1)
-
-
Riverside County California (1)
-
Salton Sea (1)
-
San Gregorio Fault (1)
-
Southern California (3)
-
-
Lake Tahoe (1)
-
Oregon (1)
-
Walker Lane (1)
-
Washington (1)
-
-
-
sedimentary rocks
-
turbidite (1)
-
-
sedimentary structures
-
sedimentary structures
-
seismites (1)
-
-
-
sediments
-
sediments
-
clastic sediments (1)
-
marine sediments (2)
-
-
turbidite (1)
-
Post-glacial stratigraphy and late Holocene record of great Cascadia earthquakes in Ozette Lake, Washington, USA
High-resolution geophysical and geochronological analysis of a relict shoreface deposit offshore central California: Implications for slip rate along the Hosgri fault
Seismostratigraphic analysis of Lake Cahuilla sedimentation cycles and fault displacement history beneath the Salton Sea, California, USA
Late Quaternary sea level, isostatic response, and sediment dispersal along the Queen Charlotte fault
Systematic characterization of morphotectonic variability along the Cascadia convergent margin: Implications for shallow megathrust behavior and tsunami hazards
Focused fluid flow and methane venting along the Queen Charlotte fault, offshore Alaska (USA) and British Columbia (Canada)
Morphology, structure, and kinematics of the San Clemente and Catalina faults based on high-resolution marine geophysical data, southern California Inner Continental Borderland (USA)
Abstract Marine turbidite records have been used to infer palaeoseismicity and estimate recurrence intervals for large (>M w 7) earthquakes along the Cascadia Subduction Zone. Conventional models propose that upper slope failures are funneled into submarine canyons and develop into turbidity flows that are routed down-canyon to deep-water channel and fan systems. However, the sources and pathways of these turbidity flows are poorly constrained, leading to uncertainties in the connections between ground shaking, slope failure and deep-water turbidites. We examine the spatial distribution of submarine landslides along the southern Cascadia margin to identify source regions for slope failures that may have developed into turbidity flows. Using multibeam bathymetry, sparker multichannel seismic and chirp sub-bottom data, we observe relatively few canyon head slope failures and limited evidence of large landslides on the upper and middle slope. Most of the submarine canyons are draped with sediment infill in the upper reaches and do not appear to be active sediment conduits during the recent sea-level highstand. In contrast, there is evidence of extensive mass wasting of the lower slope and non-channelized downslope flows. Contrary to previous studies, we propose that failures along the lower slope are the primary sources for deep-sea seismoturbidites in southern Cascadia.
Slope failure and mass transport processes along the Queen Charlotte Fault, southeastern Alaska
Abstract The Queen Charlotte Fault defines the Pacific–North America transform plate boundary in western Canada and southeastern Alaska for c. 900 km. The entire length of the fault is submerged along a continental margin dominated by Quaternary glacial processes, yet the geomorphology along the margin has never been systematically examined due to the absence of high-resolution seafloor mapping data. Hence the geological processes that influence the distribution, character and timing of mass transport events and their associated hazards remain poorly understood. Here we develop a classification of the first-order shape of the continental shelf, slope and rise to examine potential relationships between form and process dominance. We found that the margin can be split into six geomorphic groups that vary smoothly from north to south between two basic end-members. The northernmost group (west of Chichagof Island, Alaska) is characterized by concave-upwards slope profiles, gentle slope gradients (<6°) and relatively low along-strike variance, all features characteristic of sediment-dominated siliciclastic margins. Dendritic submarine canyon/channel networks and retrogressive failure complexes along relatively gentle slope gradients are observed throughout the region, suggesting that high rates of Quaternary sediment delivery and accumulation played a fundamental part in mass transport processes. Individual failures range in area from 0.02 to 70 km 2 and display scarp heights between 10 and 250 m. Transpression along the Queen Charlotte Fault increases southwards and the slope physiography is thus progressively more influenced by regional-scale tectonic deformation. The southernmost group (west of Haida Gwaii, British Columbia) defines the tectonically dominated end-member: the continental slope is characterized by steep gradients (>20°) along the flanks of broad, margin-parallel ridges and valleys. Mass transport features in the tectonically dominated areas are mostly observed along steep escarpments and the larger slides (up to 10 km 2 ) appear to be failures of consolidated material along the flanks of tectonic features. Overall, these observations highlight the role of first-order margin physiography on the distribution and type of submarine landslides expected to occur in particular morphological settings. The sediment-dominated end-member allows for the accumulation of under-consolidated Quaternary sediments and shows larger, more frequent slides; the rugged physiography of the tectonically dominated end-member leads to sediment bypass and the collapse of uplifted tectonic features. The maximum and average dimensions of slides are an order of magnitude smaller than those of slides observed along other (passive) glaciated margins. We propose that the general patterns observed in slide distribution are caused by the interplay between tectonic activity (long- and short-term) and sediment delivery. The recurrence (<100 years) of M > 7 earthquakes along the Queen Charlotte Fault may generate small, but frequent, failures of under-consolidated Quaternary sediments within the sediment-dominated regions. By contrast, the tectonically dominated regions are characterized by the bypass of Quaternary sediments to the continental rise and the less frequent collapse of steep, uplifted and consolidated sediments.
Slope failure and mass transport processes along the Queen Charlotte Fault Zone, western British Columbia
Abstract Multibeam echosounder (MBES) images, 3.5 kHz seismic-reflection profiles and piston cores obtained along the southern Queen Charlotte Fault Zone are used to map and date mass-wasting events at this transform margin – a seismically active boundary that separates the Pacific Plate from the North American Plate. Whereas the upper continental slope adjacent to and east (upslope) of the fault zone offshore of the Haida Gwaii is heavily gullied, few large-sized submarine landslides in this area are observed in the MBES images. However, smaller submarine seafloor slides exist locally in areas where fluid flow appears to be occurring and large seafloor slides have recently been detected at the base of the steep continental slope just above its contact with the abyssal plain on the Queen Charlotte Terrace. In addition, along the subtle slope re-entrant area offshore of the Dixon Entrance shelf bathymetric data suggest that extensive mass wasting has occurred in the vicinity of an active mud volcano venting gas. We surmise that the relative lack of submarine slides along the upper slope in close proximity to the Queen Charlotte Fault Zone may be the result of seismic strengthening (compaction and cohesion) of a sediment-starved shelf and slope through multiple seismic events.
Subsurface controls on the development of the Cape Fear Slide Complex, central US Atlantic Margin
Abstract The Cape Fear Slide is one of the largest (>25 000 km 3 ) submarine slope failure complexes on the US Atlantic margin. Here we use a combination of new high-resolution multichannel seismic data (MCS) from the National Science Foundation Geodynamic Processes at Rifting and Subducting Margins (NSF GeoPRISMS) Community Seismic Experiment and legacy industry MCS to derive detailed stratigraphy of this slide and constrain the conditions that lead to slope instability. Limited outer-shelf and upper-slope accommodation space during the Neogene, combined with lowstand fluvial inputs and northwards Gulf Stream sediment transport, appears to have contributed to thick Miocene and Pliocene deposits that onlapped the lower slope. This resulted in burial of an upper-slope bypass zone developed from earlier erosional truncation of Paleogene strata. These deposits created a broad ramp that allowed accumulation of thick Quaternary strata across a low-gradient (<3.5°) upper slope. Upslope of one of the larger headwalls, undulating Quaternary strata appear to downlap onto a buried failure plane. Many of the nested headwalls of the upper-slope portion of slide complex are underlain by deformed strata, which may be the result of fluid migration associated with localized subsidence from salt migration. These new data and observations suggest that antecedent margin physiography, sediment loading and substrate fluid flow were key factors in preconditioning the Cape Fear slope for failure.
The Santa Cruz Basin Submarine Landslide Complex, Southern California: Repeated Failure of Uplifted Basin Sediment
Abstract The Santa Cruz Basin (SCB) is one of several fault-bounded basins within the California Continental Borderland that has drawn interest over the years for its role in the tectonic evolution of the region, but also because it contains a record of a variety of modes of sedimentary mass transport (i.e., open slope vs. canyon-confined systems). Here, we present a suite of new high-resolution marine geophysical data that demonstrate the extent and significance of the SCB submarine landslide complex in terms of late Miocene to present basin evolution and regional geohazard assessment. The new data reveal that submarine landslides cover an area of ~160 km 2 along the eastern flank of the Santa Rosa–Cortes Ridge and have emplaced a minimum of 9 to 16 km 3 of mass transport deposits along the floor of the SCB during the Quaternary. The failures occur along an onlapping wedge of Pliocene sediment that was uplifted and tilted during the later stages of basin development. The uplifted and steepened Pliocene strata were preconditioned for failure so that parts of the section failed episodically throughout the Quaternary—most likely during large earthquakes. Once failed, the material initially translated as a block glide along a defined failure surface. As transport continued several kilometers across a steep section of the lower slope, the material separated into distinctive proximal and distal components. The failed masses mobilized into debris flows that show evidence for dynamic separation into less and more mobile components that disturbed and eroded underlying stratigraphy in areas most proximal to the source area. The most highly mobilized components and those with the lowest viscosity and yield strength produced flows that blanket the underlying stratigraphy along the distal reaches of deposition. The estimated volumes of individual landslides within the complex (0.1–2.6 km 3 ), the runout distance measured from the headwalls (>20 km), and evidence for relatively high velocity during initial mobilization all suggest that slides in the SCB may have been tsunamigenic. Because many slopes in the California Continental Borderland are either sediment starved or have experienced sediment bypass during the Quaternary, we propose that uplift and rotation of Pliocene deposits are important preconditioning factors for slope failure that need to be systematically evaluated as potential tsunami initiators.
Right‐Lateral Fault Motion along the Slope‐Basin Transition, Gulf of Santa Catalina, Southern California
Abstract An active fault system carrying a significant component of right-lateral strike-slip motion extends for ~60 km along the slope–basin transition, ~10 to 20 km offshore of the southern California coast from La Jolla to Dana Point. From south to north, this fault system includes the Carlsbad, San Onofre, and San Mateo fault zones. High-resolution single channel minisparker and chirp seismic reflection data gathered from 2006 to 2011 reveal complex and variable fault zones that are generally characterized by nearly vertical to steeply east-dipping faults with a reverse slip component. The Carlsbad fault zone shows evidence of reverse motion followed by normal separation and probably also includes a component of strike-slip offset. The San Onofre fault zone shows clear evidence of right-lateral slip, offsetting submarine gullies near the base of the slope by approximately 60 m. North of these offset gullies, the base of the slope bends about 30° to the west, following the trend of the San Mateo fault zone, but strands of the San Onofre fault zone trend obliquely up slope, appearing to merge with the Newport–Inglewood fault zone at the shelf edge. These San Onofre fault strands consist of several en echelon left-stepping segments separated by “pop-up” structures, which imply a significant component of right-lateral offset that may serve to transfer right-lateral slip from faults along the base of the slope to the Newport–Inglewood fault zone. Using approximate base Quaternary and base Holocene reflections, segments of the Carlsbad and San Onofre fault zones appear to have experienced right-lateral motion in the Holocene, whereas deformation along the San Mateo fault zone appears to represent a period of mostly pre-Quaternary transpression.