- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
GeoRef Subject
-
all geography including DSDP/ODP Sites and Legs
-
Europe
-
Southern Europe
-
Greece
-
Greek Thrace
-
Rhodope Greece (1)
-
-
-
Iberian Peninsula
-
Duero Basin (1)
-
Iberian Massif (1)
-
Spain (1)
-
Spanish Central System (1)
-
-
Rhodope Mountains (1)
-
-
Thrace
-
Greek Thrace
-
Rhodope Greece (1)
-
-
-
-
Mediterranean Sea
-
East Mediterranean
-
Aegean Sea (1)
-
-
-
-
geologic age
-
Cenozoic
-
Tertiary
-
Neogene
-
Miocene (1)
-
-
Paleogene
-
Oligocene (1)
-
-
-
-
Mesozoic (1)
-
Paleozoic
-
Carboniferous
-
Pennsylvanian (1)
-
-
-
-
Primary terms
-
Cenozoic
-
Tertiary
-
Neogene
-
Miocene (1)
-
-
Paleogene
-
Oligocene (1)
-
-
-
-
crust (2)
-
deformation (2)
-
Europe
-
Southern Europe
-
Greece
-
Greek Thrace
-
Rhodope Greece (1)
-
-
-
Iberian Peninsula
-
Duero Basin (1)
-
Iberian Massif (1)
-
Spain (1)
-
Spanish Central System (1)
-
-
Rhodope Mountains (1)
-
-
Thrace
-
Greek Thrace
-
Rhodope Greece (1)
-
-
-
-
faults (3)
-
folds (1)
-
mantle (1)
-
Mediterranean Sea
-
East Mediterranean
-
Aegean Sea (1)
-
-
-
Mesozoic (1)
-
Paleozoic
-
Carboniferous
-
Pennsylvanian (1)
-
-
-
plate tectonics (2)
-
sedimentary rocks
-
chemically precipitated rocks
-
evaporites (1)
-
-
-
tectonics
-
salt tectonics (1)
-
-
-
sedimentary rocks
-
sedimentary rocks
-
chemically precipitated rocks
-
evaporites (1)
-
-
-
The lithospheric folding model applied to the Bighorn uplift during the Laramide orogeny
ABSTRACT The Bighorn uplift, Wyoming, developed in the Rocky Mountain foreland during the 75–55 Ma Laramide orogeny. It is one of many crystalline-cored uplifts that resulted from low-amplitude, large-wavelength folding of Phanerozoic strata and the basement nonconformity (Great Unconformity) across Wyoming and eastward into the High Plains region, where arch-like structures exist in the subsurface. Results of broadband and passive-active seismic studies by the Bighorn EarthScope project illuminated the deeper crustal structure. The seismic data show that there is substantial Moho relief beneath the surface exposure of the basement arch, with a greater Moho depth west of the Bighorn uplift and shallower Moho depth east of the uplift. A comparable amount of Moho relief is observed for the Wind River uplift, west of the Bighorn range, from a Consortium for Continental Reflection Profiling (COCORP) profile and teleseismic receiver function analysis of EarthScope Transportable Array seismic data. The amplitude and spacing of crystalline-cored uplifts, together with geological and geophysical data, are here examined within the framework of a lithospheric folding model. Lithospheric folding is the concept of low-amplitude, large-wavelength (150–600 km) folds affecting the entire lithosphere; these folds develop in response to an end load that induces a buckling instability. The buckling instability focuses initial fold development, with faults developing subsequently as shortening progresses. Scaled physical models and numerical models that undergo layer-parallel shortening induced by end loads determine that the wavelength of major uplifts in the upper crust occurs at approximately one third the wavelength of folds in the upper mantle for strong lithospheres. This distinction arises because surface uplifts occur where there is distinct curvature upon the Moho, and the vergence of surface uplifts can be synthetic or antithetic to the Moho curvature. In the case of the Bighorn uplift, the surface uplift is antithetic to the Moho curvature, which is likely a consequence of structural inheritance and the influence of a preexisting Proterozoic suture upon the surface uplift. The lithospheric folding model accommodates most of the geological observations and geophysical data for the Bighorn uplift. An alternative model, involving a crustal detachment at the orogen scale, is inconsistent with the absence of subhorizontal seismic reflectors that would arise from a throughgoing, low-angle detachment fault and other regional constraints. We conclude that the Bighorn uplift—and possibly other Laramide arch-like structures—is best understood as a product of lithospheric folding associated with a horizontal end load imposed upon the continental margin to the west.
Shaping of intraplate mountain patterns: The Cantabrian orocline legacy in Alpine Iberia
Slip re-orientation in oblique rifts
Subduction and deformation of the continental lithosphere in response to plate and crust-mantle coupling
Abstract In this paper we study the dynamic and rheologic control of hanging wall accommodation in ramp-flat thrust models. In particular we vary the dimensionless ratio of shear strength to gravity stress to model hanging wall accommodation styles in different materials. In all models we require that the flat-ramp-flat footwall provides a surface of low frictional resistance. In viscous materials hanging wall accommodation progresses by wedge flow. In Bingham materials, wedge flow is also the preferred mode in cases where the gravity stress exceeds the yield limit of materials. Such models simulate the flow of salt or snow glaciers above ramp obstructions. At high ratios of shear strength to gravity stress the hanging wall blocks translate forward without bending and unbending to the form of the rigid footwall. In elastic-plastic strain-hardening materials ramp-flat accommodation progresses by fault-bend folding in case there is a near balance between the yield stress and gravity stress. In frictional materials hanging wall accommodation progresses by shear or kink-band nucleation above fault-bends. The shear or kink-bands which initially nucleate at the lower fault-bend change shape and reactivate by normal faulting or tensile failure at the upper fault-bend, depending on the ratio of shear strength to gravity stress. In nature, hanging wall accommodation by thrust nucleation above ramps and their subsequent reactivation may be anticipated in frictional sediments at upper crustal levels, where temperatures and pressures are low.