- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
GeoRef Subject
-
all geography including DSDP/ODP Sites and Legs
-
Africa
-
Afar (1)
-
East Africa (2)
-
-
Asia
-
Arabian Peninsula (1)
-
-
Caribbean region
-
West Indies
-
Antilles
-
Greater Antilles
-
Hispaniola
-
Haiti (1)
-
-
-
-
-
-
Indian Ocean
-
Arabian Sea
-
Gulf of Aden (1)
-
-
-
-
Primary terms
-
Africa
-
Afar (1)
-
East Africa (2)
-
-
Asia
-
Arabian Peninsula (1)
-
-
Caribbean region
-
West Indies
-
Antilles
-
Greater Antilles
-
Hispaniola
-
Haiti (1)
-
-
-
-
-
-
crust (1)
-
earthquakes (1)
-
faults (1)
-
geophysical methods (1)
-
Indian Ocean
-
Arabian Sea
-
Gulf of Aden (1)
-
-
-
mantle (2)
-
plate tectonics (3)
-
sea-floor spreading (1)
-
tectonics (1)
-
Is the local seismicity in western Hispaniola (Haiti) capable of imaging northern Caribbean subduction?
A multidisciplinary study of the final episode of the Manda Hararo dyke sequence, Ethiopia, and implications for trends in volcanism during the rifting cycle
Abstract The sequence of dyke intrusions between 2005 and 2010 in the Manda Hararo rift segment, Ethiopia, provided an opportunity to test conceptual models of continental rifting. Based on trends up to dyke 13 in the sequence, it was anticipated that, should magma supply continue, dykes would shorten in length and eruptions would increase in size and decrease in distance from the segment centre as extensional stress was progressively released. In this paper we revisit these predictions by presenting a comprehensive overview of the May 2010 dyke and fissure eruption, the 14th and last in the sequence, from InSAR, seismicity, satellite thermal data, ultraviolet SO 2 retrievals and multiple LiDAR surveys. We find the dyke is longer than other eruptive dykes in the sequence, propagating in two directions from the segment centre, but otherwise fairly typical in terms of opening, propagation speed and geodetic and seismic moment. However, though the eruption is located closer to the segment centre, it is much smaller than previous events. We interpret this as indicating that either the Manda Hararo rifting event was magma limited, or that extensional stress varies north and south of the segment centre.
Abstract The Red Sea arm of the triple junction in northeastern Ethiopia provides an opportunity to investigate rift-forming processes at divergent boundaries. In an attempt to study the subsurface, especially the distribution and role of melt in the rifting process, we carried out a high-precision gravity survey with a mean-square error of 0.011 mgal, assisted by differential global positioning system measurements. The profile is 162 km long and strikes ENE–WSW across the southern part of the Red Sea rift at a latitude of approximately 11.75° N. Modelling of the Bouguer anomaly, constrained by a priori information, showed detailed in-rift variations in the crustal structure and the distribution of melt beneath the rift axis. Our interpretation suggested that the process of continental break-up is governed by crustal stretching and rifting accompanied by the emplacement of melt into the lower crust above a lower density upper mantle. In addition, we interpreted the thickness of the crust beneath this part of the rift axis to be 25 km. The subsurface distribution of density beneath the profile shows that the south-central part of the Red Sea rift has modified thinned crust, intruded by high-density material, which resembles the crust formed during seafloor spreading.
Uppermost mantle velocity from Pn tomography in the Gulf of Aden
Mantle upwelling and initiation of rift segmentation beneath the Afar Depression
Mantle upwellings, melt migration and the rifting of Africa: insights from seismic anisotropy
Abstract The rifting of continents and eventual formation of ocean basins is a fundamental component of plate tectonics, yet the mechanism for break-up is poorly understood. The East African Rift System (EARS) is an ideal place to study this process as it captures the initiation of a rift in the south through to incipient oceanic spreading in north-eastern Ethiopia. Measurements of seismic anisotropy can be used to test models of rifting. Here we summarize observations of anisotropy beneath the EARS from local and teleseismic body-waves and azimuthal variations in surface-wave velocities. Special attention is given to the Ethiopian part of the rift where the recent EAGLE project has provided a detailed image of anisotropy in the portion of the Ethiopian Rift that spans the transition from continental rifting to incipient oceanic spreading. Analyses of regional surface-waves show sub-lithospheric fast shear-waves coherently oriented in a northeastward direction from southern Kenya to the Red Sea. This parallels the trend of the deeper African superplume, which originates at the core–mantle boundary beneath southern Africa and rises towards the base of the lithosphere beneath Afar. The pattern of shear-wave anisotropy is more variable above depths of 150 km. Analyses of splitting in teleseismic phases (SKS) and local shear-waves within the rift valley consistently show rift-parallel orientations. The magnitude of the splitting correlates with the degree of magmatism and the polarizations of the shear-waves align with magmatic segmentation along the rift valley. Analysis of surf ace-wave propagation across the rift valley confirms that anisotropy in the uppermost 75 km is primarily due to melt alignment. Away from the rift valley, the anisotropy agrees reasonably well with the pre-existing Pan-African lithospheric fabric. An exception is the region beneath the Ethiopian plateau, where the anisotropy is variable and may correspond to pre-existing fabric and ongoing melt-migration processes. These observations support models of magma-assisted rifting, rather than those of simple mechanical stretching. Upwellings, which most probably originate from the larger super-plume, thermally erode the lithosphere along sites of pre-existing weaknesses or topographic highs. Decompression leads to magmatism and dyke injection that weakens the lithosphere enough for rifting and the strain appears to be localized to plate boundaries, rather than wider zones of deformation.
Abstract Active deformation within the northern part of the Main Ethiopian Rift (MER) occurs within approximately 60 km-long, 20 km-wide ‘magmatic segments’ that lie within the 80 km-wide rift valley. Geophysical data reveal that the crust beneath the <1.9 Ma magmatic segments has been heavily intruded; magmatic segments accommodate strain via both magma intrusion and faulting. We undertake field and remote sensing analyses of faults and eruptive centres in the magmatic segments to estimate the relative proportion of strain accommodated by faulting and magma intrusion and the kinematics of Quaternary faults. Up to half the ≤10 km-long normal faults within the Boset—Kone and Fantale—Dofen magmatic segments have eruptive centres or extrusive lavas along their length. Comparison of the deformation field of the largest Quaternary fault and an elastic half-space dislocation model indicates a down-dip length of 10 km, coincident with the seismogenic layer thickness and the top of the seismically imaged mafic intrusions. These relations suggest that Quaternary faults are primarily driven by magma intrusion into the mid- to upper crust, which triggers faulting and dyke intrusion into the brittle upper crust. The active volcanoes of Boset, Fantale and Dofen all have elliptical shapes with their long axes in the direction N105, consistent with extension direction derived from earthquake focal mechanisms. Calderas show natural strains ranging from around 0.30 for Boset, 0.55 for Fantale, and 0.94 for Dofen. These values give extension strain rates of the order of 0.3 microstrain per year, comparable to geodetic models. Structural analyses reveal no evidence for transcurrent faults linking right-stepping magmatic segments. Instead, the tips of magmatic segments overlap, thereby accommodating strain transfer. The intimate relationship between faulting and magmatism in the northern MER is strikingly similar to that of slow-spreading mid-ocean ridges, but without the hard linkage zones of transform faults.