- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
GeoRef Subject
-
all geography including DSDP/ODP Sites and Legs
-
Channeled Scabland (1)
-
Columbia River (1)
-
Columbia River basin (1)
-
Pasco Basin (1)
-
Snake River (1)
-
United States
-
Idaho (1)
-
Montana (1)
-
Oregon (1)
-
Washington
-
Spokane County Washington
-
Spokane Washington (1)
-
-
-
-
-
geochronology methods
-
U/Pb (1)
-
-
geologic age
-
Cenozoic
-
Quaternary
-
Cordilleran ice sheet (1)
-
Pleistocene
-
Lake Missoula (1)
-
upper Pleistocene
-
Wisconsinan
-
upper Wisconsinan (1)
-
-
-
-
-
Tertiary
-
Neogene
-
Miocene (1)
-
Pliocene (1)
-
-
-
-
-
minerals
-
silicates
-
orthosilicates
-
nesosilicates
-
zircon group
-
zircon (1)
-
-
-
-
-
-
Primary terms
-
absolute age (1)
-
Cenozoic
-
Quaternary
-
Cordilleran ice sheet (1)
-
Pleistocene
-
Lake Missoula (1)
-
upper Pleistocene
-
Wisconsinan
-
upper Wisconsinan (1)
-
-
-
-
-
Tertiary
-
Neogene
-
Miocene (1)
-
Pliocene (1)
-
-
-
-
dams (1)
-
remote sensing (1)
-
sediments (1)
-
United States
-
Idaho (1)
-
Montana (1)
-
Oregon (1)
-
Washington
-
Spokane County Washington
-
Spokane Washington (1)
-
-
-
-
-
sediments
-
sediments (1)
-
Major reorganization of the Snake River modulated by passage of the Yellowstone Hotspot
ABSTRACT The Columbia River Gorge is the Columbia River’s long-held yet evolving passage through the volcanic arc of the Cascade Range. The globally unique setting of a continental-scale river bisecting an active volcanic arc at the leading edge of a major plate boundary creates a remarkable setting where dynamic volcanic and tectonic processes interact with diverse and energetic fluvial processes. This three-day field trip explores several elements of the gorge and its remarkable geologic history—cast here as a contest between regional tectonic and volcanic processes building and displacing landscapes, and the relentless power of the Columbia River striving to maintain a smooth passage to the sea. DEDICATION Dedicated to Russell C. Evarts (7 April 1947–11 July 2017) and his contributions to Pacific Northwest geology. Russ Evarts devoted most of his 30-year career with the U.S. Geological Survey to geologic mapping of Oregon and Washington. His thorough geologic mapping of the near-vertical terrain of the western Columbia River Gorge underpins much of what is reported in this guide and continues to inspire our studies of the geology of the Pacific Northwest.
ABSTRACT In late Wisconsin time, the Purcell Trench lobe of the Cordilleran ice sheet dammed the Clark Fork of the Columbia River in western Montana, creating glacial Lake Missoula. During part of this epoch, the Okanogan lobe also dammed the Columbia River downstream, creating glacial Lake Columbia in northeast Washington. Repeated failure of the Purcell Trench ice dam released glacial Lake Missoula, causing dozens of catastrophic floods in eastern Washington that can be distinguished by the geologic record they left behind. These floods removed tens of meters of pale loess from dark basalt substrate, forming scars along flowpaths visible from space. Different positions of the Okanogan lobe are required for modeled Missoula floods to inundate the diverse channels that show field evidence for flooding, as shown by accurate dam-break flood modeling using a roughly 185 m digital terrain model of existing topography (with control points dynamically varied using automatic mesh refinement). The maximum extent of the Okanogan lobe, which blocked inundation of the upper Grand Coulee and the Columbia River valley, is required to flood all channels in the Telford scablands and to produce highest flood stages in Pasco Basin. Alternatively, the Columbia River valley must have been open and the upper Grand Coulee blocked to nearly match evidence for high water on Pangborn bar near Wenatchee, Washington, and to flood Quincy Basin from the west. Finally, if the Columbia River valley and upper Grand Coulee were both open, Quincy Basin would have flooded from the northeast. In all these scenarios, the discrepancy between modeled flood stages and field evidence for maximum flood stages increases in all channels downstream, from Spokane to Umatilla Basin. The pattern of discrepancies indicates that bulking of floods by loess increased flow volume across the scablands, but this alone does not explain low modeled flow stages along the Columbia River valley near Wenatchee. This latter discrepancy between modeled flood stages and field data requires either additional bulking of flow by sediment along the Columbia reach downstream of glacial Lake Columbia, or coincident dam failures of glacial Lake Columbia and glacial Lake Missoula.