Update search
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
Format
Article Type
Journal
Publisher
GeoRef Subject
-
all geography including DSDP/ODP Sites and Legs
-
Asia
-
Far East
-
Japan
-
Honshu
-
Ryoke Belt (1)
-
-
Sambagawa Belt (1)
-
-
-
-
Eurasia (1)
-
Sierra Nevada (1)
-
United States
-
California
-
Sierra Nevada Batholith (1)
-
-
Nevada
-
Lyon County Nevada (1)
-
-
-
-
commodities
-
metal ores
-
copper ores (1)
-
-
-
elements, isotopes
-
metals
-
rare earths (1)
-
-
-
geologic age
-
Mesozoic
-
Cretaceous
-
Upper Cretaceous
-
Tuolumne Intrusive Suite (1)
-
-
-
Jurassic
-
Middle Jurassic (1)
-
-
-
-
igneous rocks
-
igneous rocks
-
plutonic rocks
-
granites (1)
-
granodiorites (1)
-
-
-
-
metamorphic rocks
-
metamorphic rocks (1)
-
-
minerals
-
oxides
-
magnetite (1)
-
-
silicates
-
chain silicates
-
amphibole group
-
clinoamphibole
-
hornblende (1)
-
-
-
-
framework silicates
-
feldspar group (1)
-
-
sheet silicates
-
mica group
-
biotite (1)
-
-
-
-
-
Primary terms
-
Asia
-
Far East
-
Japan
-
Honshu
-
Ryoke Belt (1)
-
-
Sambagawa Belt (1)
-
-
-
-
crust (3)
-
Eurasia (1)
-
geochemistry (1)
-
heat flow (2)
-
igneous rocks
-
plutonic rocks
-
granites (1)
-
granodiorites (1)
-
-
-
intrusions (3)
-
magmas (4)
-
mantle (1)
-
Mesozoic
-
Cretaceous
-
Upper Cretaceous
-
Tuolumne Intrusive Suite (1)
-
-
-
Jurassic
-
Middle Jurassic (1)
-
-
-
metal ores
-
copper ores (1)
-
-
metals
-
rare earths (1)
-
-
metamorphic rocks (1)
-
metamorphism (1)
-
plate tectonics (1)
-
thermal analysis (1)
-
United States
-
California
-
Sierra Nevada Batholith (1)
-
-
Nevada
-
Lyon County Nevada (1)
-
-
-
GeoRef Categories
Era and Period
Epoch and Age
Book Series
Date
Availability
Thermal Modeling of the Sanbagawa and Ryoke Belts Available to Purchase
Identifying plutons associated with long-lived volcanism by thermal modeling of contact metamorphic aureoles Available to Purchase
Magma Emplacement Rates and Porphyry Copper Deposits: Thermal Modeling of the Yerington Batholith, Nevada Available to Purchase
Rates of magma transfer in the crust: Insights into magma reservoir recharge and pluton growth Available to Purchase
Front Matter Free
An introduction to magma dynamics Available to Purchase
Abstract A variety of methods have been employed to decipher magmatic systems, including geophysical, petrological, textural and geochemical approaches, and these elucidate a large variety of characteristics of different plumbing systems and magmatic differentiation processes. A common theme to the papers presented in this book is the observation of transport of small volume magma batches with a relatively high frequency, as opposed to less frequent transport of larger magma volumes that would require storage in large crustal reservoirs for long periods of time. The implications of this observation are discussed in the context of a possible tectonic control on crustal magma dynamics.
Some first-order observations on magma transfer from mantle wedge to upper crust at volcanic arcs Available to Purchase
Abstract The viscosity of lavas erupted at volcanic arcs varies over orders of magnitude. A comparison of the relative abundance of viscous lava dome eruptions indicates that the average viscosity of arc lavas also varies considerably between arcs. It is shown that, for continental or transitional arcs with little within-arc crustal deformation and without underlying slab windows or tears, average lava viscosity is anticorrelated with average surface heat flux. The latter may be influenced by crustal thickness and crustal magma throughput. To constrain the relative contributions of these parameters, variations of average lava viscosity with average crustal thickness and plate convergence rate are assessed. While crustal thickness appears to have little effect on average lava viscosity, a good anticorrelation exists between average lava viscosity and plate convergence rate, with the exception of two arcs that show significant intra-arc crustal deformation. If plate convergence rate is a good proxy of the rate of melt generation within the mantle wedge, these first-order observations indicate that, where the rate of mantle melting is high, crustal magma throughput is rapid and efficient, resulting in low-viscosity melts migrating through a hot overriding crust; in contrast, where the rate of mantle melting is low, crustal magma transfer is slow and inefficient, resulting in high-viscosity melts that may frequently stall within a cool overriding crust prior to eruption. Uranium series geochemical evidence from dome lavas is presented and lends support to this interpretation. Finally, some explanations are offered for the observed average viscosity variations of arcs with underlying slab windows or tears and/or significant intra-arc crustal deformation.
Probing Stromboli volcano from the mantle to paroxysmal eruptions Available to Purchase
Abstract We investigated the plumbing system of Stromboli volcano from the upper mantle to the surface. Thermobarometric estimates indicate that the deeper detected part of the plumbing system is located in the upper mantle, at approximately 34–24 km depth where, during their ascent, primitive Stromboli basalts (HKCA to shoshonitic) interact with peridotitic materials. In this region magma flow is probably channelled along fracture zones that may converge into a feeder dyke that crosscuts the Moho at about 17 km depth. During their ascent, basaltic magmas will interact with lower crust materials represented by cumulates of earlier Stromboli-type basalts at 13–10 km depth. This zone is also the section of the plumbing system where the feeder dyke is entering the chamber. Thermobarometric estimates, obtained by constructing a grid of selected reactions, indicate that current primitive Stromboli basalts equilibrate at 0.3–0.15 GPa and temperatures approaching 1200 °C, and progressively crystallize and degas before being erupted. Crystal size distributions on lavas and juvenile tephra erupted in 2002–2003 give very variable residence times. Based on average bubble distances, the estimated times for the exsolution of the gaseous phases range from 2–7 days to 45 min for the lavas and scorias, down to about 15 h to 12 min for the pumices erupted during paroxysmal explosions. Estimated syneruptive viscosities range from 10 2 Pa s for the anhydrous basaltic pumices at 1200 °C, to 10 3 –10 4 Pa s for lavas approaching their effusion temperatures (1100–1150 °C). In turn, viscosities for the hydrous basaltic melt that led to the formation of the basaltic pumices may be around 10 Pa s or lower. In the light of the above, we discuss the possible shapes and volumes of Stromboli magma chamber by considering a sphere, an ellipsoid (geometrically concordant with the regional stress distribution) and a feeder dyke, the last two being more likely. In the light of volcanological, structural and geophysical data on conduit thickness, we propose an alternative model that takes into account the volumes of recently erupted lavas. This model consists of a convective ellipsoidal magma chamber ‘injected’ by an active feeder dike of undegassed magma of higher temperature, lower density and lower viscosity. This dyke will evolve into a magma column inside the chamber and will separate the reservoir into two lateral, nearly symmetric convective regions. Crystallization would occur preferentially in the proximity of the wallrocks, particularly where the chamber is entering the conduit. The onset of paroxysmal explosions during major effusive cycles may be explained by a drastic increase in the intrusion rates at the base of the chamber that will produce a progressive inflation of the magma column dynamically transferred to the chamber walls. The ceasing of ‘anomalous’ intrusion rates at the base of the chamber, coupled with higher discharge rates, will progressively depressurize the chamber to a critical threshold, until the stress transferred to the walls is dynamically released: at this point the walls themselves will undergo a nearly instantaneous elastic rebound and contract in the attempt to recover their original pre-eruptive geometry. These dynamics will squeeze up portions of the undegassed magma column, triggering a paroxysmal explosion with the ejection of ‘golden pumices’.
A rigorous tool for evaluating the importance of viscous dissipation in sill formation: it's in the tip Available to Purchase
Abstract Crustal magma transport is typically described using a complex, non-linear model associated with fluid-driven fracturing, and therefore fundamentally sound modelling forms the basis for interpretation of magmatic intrusions. One of the most basic considerations is that magma-driven sills can be broadly categorized based on the energy dissipation mechanism that is predominant during intrusion growth. In cases where either viscous flow or overcoming fracture toughness strongly dominates fracture behaviour, it is typical to speak of viscosity-dominated or toughness-dominated regimes, each of which defines a class of fracture propagation with significant implications for modelling. This paper presents a straightforward and geometry-independent means for local determination of the expected propagation regime based on an experimentally verified mathematical analysis of the multi-scale, coupled mechanics that govern the near-tip region. The propagation regime is then related directly to the ratio between a characteristic length associated with the near-tip physics compared with the size of the fracture/sill. Sill growth is shown to be expected in or near the viscosity-dominated regime and hence modelling generally must take into account the complexity of the near-tip region rather than relying solely on the tip behaviour implied by linear elastic fracture, although toughness-dominated mafic intrusions can also be anticipated if fracture toughness increases sufficiently rapidly with the intrusion size.
Dynamics of magma supply to Kīlauea volcano, Hawai‘i: integrating seismic, geodetic and eruption data Available to Purchase
Abstract We focus on movement of magma beneath Kīlauea from the long summit eruption in 1967–1968 through the first historical sustained eruption on the east rift zone (Mauna Ulu 1969–1974), ending with the occurrence of a magnitude 7.2 earthquake beneath Kīlauea's eastern south flank. Magma from the Hawai‘iian hot spot continuously moves upward to summit storage and drives seaward spreading of Kīlauea's south flank on a 10–12 km deep décollement. Spreading creates dilation in Kīlauea's rift zones and provides room to store magma at depths extending to the décollement surface. During the period of study three types of eruptions – normal (short-lived), episodic and sustained – and three types of intrusions – traditional (summit to rift), inflationary and slow – are classified. Rates of sustained eruption are governed by the geometry of the magmatic plumbing. Swarms of earthquakes beneath the south flank signal increased pressure from magma entering Kīlauea's adjacent rift zone. Magma supply rates are obtained by combining the volume of magma transferred to sites of eruption or intrusion with the volume opened by seaward spreading over the same increment of time. In our interpretation the varying character of eruptions and intrusions requires a gradual increase in magma supply rate throughout the period augmented by incremental increases in spreading rate. The three types of eruptions result from different combinations of magma supply and spreading rate.
Magnetic signatures associated with magma ascent and stagnation at Popocatepetl volcano, Mexico, during 2006 Available to Purchase
Abstract Monitoring of real-time magnetic signals at Popocatepetl during 2006 has allowed discrimination of magma injection and dome growth. Magnetic signals correlated with seismic, volcanotectonic events and harmonic tremor, as well as number of small emissions, spring water pH, ash components and dome evolution helped define upward magma transport and yield a better understanding of the volcanic plumbing system. Magma ascent occurs mostly in periods of 7±3 days associated with harmonic tremor and decreasing magnetic signals between −1.1 and −15 nT, followed by increasing signals linked to cooling of the domes and increased seismicity over periods of 1 to more than 3 months. The dome clogs the vent after the negative magnetic anomaly–harmonic tremor period associated with magma ascent and forces an explosive crater-reopening explosion. Larger negative changes in the magnetic signals occurred in April (−6 nT), August (−3 to −6 nT) and October to December (−5 to −15 nT), associated with dome formation and growth. Negative magnetic anomalies preceded eruptions by 3 days in 2006.
Understanding crystal populations and their significance through the magma plumbing system Available to Purchase
Abstract Crystals are rarely composed of a single crystal population that have grown solely from the batch of magma in which they are resident on emplacement, either by eruption or shallow intrusion. Close investigation of the majority of crystal populations reveal that they comprise up to four main components: phenocrysts, crystals co-genetic with their magmatic host; xenocrysts, crystals wholly, or in part, foreign to the magmatic host and magma system; antecrysts, crystals which are recycled one or several times before inclusion in the host magma but have an origin within the magmatic system; and microlites, which represent small co-genetic crystals which nucleate and grow rapidly on decompression and eruption. Textural analysis techniques are employed to quantify key aspects of the crystal population, including crystal shape, crystal size distributions, spatial distribution patterns and textural modification using dihedral angles. Santorini provides a case study of an active volcanic system where a combined textural analysis study has been developed, highlighting how the crystal population is being continuously modified by a series of replenishment and mixing events. Developing textural and microgeochemical techniques provides the next stage in the interrogation of crystal populations, linking textures to isotopic heterogeneities and providing fingerprints of where crystals are sourced and re-cycled.
Evidence for a short-lived stratified magma chamber: petrology of the Z-To5 tephra layer ( c . 5.8 ka) at Zao volcano, NE Japan Available to Purchase
Abstract Volcanic rocks from the Z-To5 tephra layer of Zao volcano, NE Japan, preserve petrological information that reflects the magmatic processes under the volcano. The Z-To5 rocks were formed by the mixing of three magmas that differed in composition and phenocryst assemblage: basalt (1150–1200 °C), with high Mg (Fo c . 81 ) olivine; basaltic andesite (1020–1100 °C), with Mg-rich orthopyroxene (Mg#= c . 78) and clinopyroxene (Mg#= c . 78), lower Mg olivine (Mg#= c . 78), and calcic (An c . 85 ) plagioclase; and andesite (900–1000 °C) with Mg-poor orthopyroxene (Mg#=61–66) and clinopyroxene (Mg#=64–68), and An-poor plagioclase. The basaltic magma was formed through fractionation of Fo c . 85 olivine from a less differentiated basaltic magma during its fast ascent from the depths. The andesitic magma, which occupied a shallow magma chamber, was heated by underplating of the basaltic magma, resulting in dissolution of some minerals. Subsequently, the basaltic andesite magma was formed by mixing of the basaltic and andesitic magmas in the chamber. Petrological evidence for the rapid growth of phenocrysts in the basaltic andesite magma suggests that the magma residence time was short. The basaltic andesite magma, mixing with a small portion of the andesitic magma, was withdrawn upon eruption. The rates of these processes are inferred to be rapid based on petrological considerations.
Uranium-series isotope and thermal constraints on the rate and depth of silicic magma genesis Available to Purchase
Abstract Uranium-series isotopes provide important constraints on the timescale of magma differentiation and this can be used to identify where in the crust and silicic magmas acquire their geochemical characteristics. Timescales of differentiation can be inferred from the observed co-variations of U-series disequilibria with differentiation indexes. When crustal assimilation of secular equilibrium material is involved, inferred timescales will generally decrease. In turn, they will increase if periodical recharge (>20 wt% relative volume) of the magma body occurs. If crustal assimilation and magma recharge occur concurrently, inferred timescales for differentiation can be similar to that of closed system differentiation. We illustrate the approach with data from Mount St Helens which suggest that dacitic compositions are produced in c . 2000 years. Combining this with recent evidence for an important role for amphibole fractionation suggests that differentiation of a c . 10 km 3 magma body at this volcanic centre occurs at 8–10 km depth in the crust.
Long-term geochemical variability of the Late Cretaceous Tuolumne Intrusive Suite, central Sierra Nevada, California Available to Purchase
Abstract This study investigates the internal anatomy and petrogenesis of the Tuolumne Intrusive Suite (TIS), which comprises metaluminous, high-potassium, calc-alkaline granitoids typical of the Sierra Nevada batholith. Although the TIS has often been cited as an example of a large magma chamber that cooled and fractionated from the margins inward, its geochemistry is inconsistent with closed-system fractionation. Most major elements are highly correlated with SiO 2 , but the scattered nature of trace elements and variations of initial Sr and Nd isotopic ratios indicate that fractional crystallization is not the predominant process responsible for its chemical evolution. Isotopic data suggest mixing between melts of mantle-like rocks and a granitic melt similar in composition to the highest-silica TIS unit. Monte Carlo models of magma mixing confirm that such processes can reproduce the observed variations in major elements, trace elements and isotopic ratios. Thermobarometry suggests emplacement at depths near 6 km and crystallization temperatures ranging from 660 to 750 °C. Feldspars, hornblende, biotite and magnetite exhibit evidence of extensive low-temperature subsolidus exsolution. The TIS as a whole trends toward more evolved isotopic compositions and younger U–Pb zircon ages passing inward. This pattern indicates a general increase in the proportion of felsic, crustally derived melt in the mixing process, which may have resulted from net accumulation of heat added to the lower crust by intrusion of mantle-derived mafic magma. However, the bulk geochemical and isotopic compositions of the equigranular Half Dome Granodiorite, the porphyritic Half Dome Granodiorite and the Cathedral Peak Granodiorite overlap one another and the contacts between them are commonly gradational. We interpret these map units to represent a single petrological continuum rather than distinct intrusive phases. The textural differences that define the units probably reflect thermal evolution of the system rather than distinct intrusive events.
Construction, solidification and internal differentiation of a large felsic arc pluton: Cathedral Peak granodiorite, Sierra Nevada Batholith Available to Purchase
Abstract The Tuolumne Batholith (TB), Sierra Nevada Batholith (USA), is an archetypal large, zoned arc intrusion ( c . 1200 km 2 ). Previous work proposed that compositional zonation observed in the TB was produced in-situ by inward differentiation of a large magma chamber and/or large-scale, intrachamber magma mixing. Recent geochronology shows that the TB was intruded over 8–9 Ma, making single pulse fractionation or mixing in a magma chamber of TB dimensions unlikely. We examine processes responsible for compositional variation in the Cathedral Peak Granodiorite, which is the largest mapped unit of the TB. New field, geochemical and geochronological work along a roughly contact-perpendicular 5 km transect indicates: (1) magmatic foliation is steeply-dipping (>60°); (2) field evidence for repeated separation of crystals from melt and local magma mixing is observed; (3) U–Pb zircon ages at opposing ends of the transect are indistinguishable within error ( c . 87.5 Ma); (4) bulk composition varies only modestly but trace elements show variable degrees of scatter; (5) ɛNd(t) and 87 Sr/ 86 Sr(i) have small variation compared with that in the whole TB. Geochemical and isotopic data are compatible with fractionation of major silicates and accessory minerals. However, the geochemical spatial variation, minor isotopic variation and field evidence suggest that fractionation was highly disorganized and also involved mixing with new input magma and remobilization of crystal mush as the pluton solidified. Our observations are consistent with the construction of a large and dynamic magma system within the last c . 1 Ma of TB growth.
Snake River Plain – Yellowstone silicic volcanism: implications for magma genesis and magma fluxes Available to Purchase
Abstract The origin of large-volume, high-temperature silicic volcanism associated with onset of the Snake River Plain – Yellowstone (SRPY) hotspot track is addressed based on evolution of the well-characterized Miocene Bruneau–Jarbidge (BJ) eruptive centre. Although O–Sr–Pb isotopic and bulk compositions of BJ rhyolites exhibit strong crustal affinity, including strong 18 O-depletion, Nd isotopic data preclude wholesale melting of ancient basement rocks and implicate involvement of a juvenile component – possibly derived from contemporaneous basaltic magmas. Several lines of evidence, including limits on 18 O-depletion of the rhyolite source rocks due to influx of meteoric/hydrothermal fluids, constrain rhyolite generation to depths shallower than mid-upper crust (<20 km depth). For crustal melting driven by basaltic intrusions, sustenance of temperatures exceeding 900 °C at such depths over the life of the BJ eruptive centre requires incremental intrusion of approximately 16 km of basalt into the crust. This minimum basaltic flux ( c . 4 mm year −1 ) is about one-tenth that at Kilauea. Nevertheless, emplacement of such volumes of magma in the crust creates a serious room problem, requiring that the crust must undergo significant extensional deformation – seemingly exceeding present estimates of extensional strain for the SRPY province.
Uniform processes of melt differentiation in the central Izu Bonin volcanic arc (NW Pacific) Available to Purchase
Abstract The intra-oceanic Izu Bonin arc (NW Pacific) has produced a bimodal spectrum of melts with maxima in the basaltic andesitic ( c . 53–54 wt% SiO 2 ) and rhyolitic range ( c . 70–72 wt% SiO 2 ) since arc inception c . 48–49 million years ago. Composition of phenocrysts and accessory minerals from 21 contemporaneous fallout tephras from ODP Site 782A confirm the bimodality and uniformity of the erupted melts. The basaltic andesite melts equilibrated with calcic plagioclase ( c . An 70–95 ), high-Mg# clino- and orthopyroxene and low-Ti titanomagnetite. Dacitic and rhyolitic melts crystallized sodic plagioclase ( c . An 40–60 ), low-Mg# clino- and orthopyroxene, apatite, Ti-rich titanomagnetite in addition to occasional ilmenite and amphibole. The Izu melts are inferred to crystallize at oxygen fugacities between c . 0 to +2.5 log 10 units relative to FMQ, at temperatures between c . 775° and 1100 °C and at pressures between c . 300 and c . 1100 MPa, corresponding to c . 5–35 km lithospheric depth. The compositional uniformity of the tephra layers, which are spaced on average 230 ± 380 ka apart, suggest uniform processes of differentiation since at least c . 42 Ma ago. The tephra record shows no indication of periodic or progressive crustal growth that might correlate with the alternate periods of arc formation, arc rifting or backarc spreading, or would suggest an increasingly efficient ‘crustal filter’ with time. The tephra data tentatively conform to a model where crust grows steadily through intrusions of mafic and evolved melt body batches whereby buoyancy controls the level of solidification. While the tephra compositions demonstrate the uniformity of the processes of melt formation and differentiation through time, the data do not permit the differentiation processes themselves to be constrained. These may comprise fractional crystallization, crustal fusion, fusion of non-peridotitic sub-crustal lithologies, or any combination of these processes.
Back Matter Free
Abstract Magmas are subject to a series of processes that lead to their differentiation during transfer through, and storage within, the Earth’s crust. The depths and mechanisms of differentiation, the crustal contribution to magma generation through wall-rock assimilation, the rates and timescales of magma generation, transfer and storage, and how these link to the thermal state of the crust are subject to vivid debate and controversy. This volume presents a collection of research articles that provide a balanced overview of the diverse approaches available to elucidate these topics, and includes both theoretical models and case studies. By integrating petrological, geochemical and geophysical approaches, it offers new insights to the subject of magmatic processes operating within the Earth’s crust, and reveals important links between subsurface processes and volcanism.