Update search
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
Format
Article Type
Journal
Publisher
GeoRef Subject
-
all geography including DSDP/ODP Sites and Legs
-
Alpine Fault (1)
-
Australasia
-
New Zealand (2)
-
-
South Island (1)
-
-
commodities
-
metal ores
-
gold ores (1)
-
-
mineral deposits, genesis (1)
-
-
elements, isotopes
-
carbon (1)
-
-
metamorphic rocks
-
metamorphic rocks (1)
-
-
minerals
-
native elements
-
graphite (1)
-
-
-
Primary terms
-
Australasia
-
New Zealand (2)
-
-
carbon (1)
-
crust (1)
-
deformation (1)
-
earthquakes (1)
-
faults (2)
-
geophysical methods (2)
-
metal ores
-
gold ores (1)
-
-
metamorphic rocks (1)
-
metamorphism (1)
-
metasomatism (1)
-
mineral deposits, genesis (1)
-
tectonics
-
neotectonics (1)
-
-
-
rock formations
-
Alpine Schist (1)
-
GeoRef Categories
Book Series
Date
Availability
New Zealand Fault‐Rupture Depth Model v.1.0: A Provisional Estimate of the Maximum Depth of Seismic Rupture on New Zealand’s Active Faults Available to Purchase
Textural changes of graphitic carbon by tectonic and hydrothermal processes in an active plate boundary fault zone, Alpine Fault, New Zealand Available to Purchase
Abstract Graphitization in fault zones is associated both with fault weakening and orogenic gold mineralization. We examine processes of graphitic carbon emplacement and deformation in the active Alpine Fault Zone, New Zealand by analysing samples obtained from Deep Fault Drilling Project (DFDP) boreholes. Optical and scanning electron microscopy reveal a microtextural record of graphite mobilization as a function of temperature and ductile then brittle shear strain. Raman spectroscopy allowed interpretation of the degree of graphite crystallinity, which reflects both thermal and mechanical processes. In the amphibolite-facies Alpine Schist, highly crystalline graphite, indicating peak metamorphic temperatures up to 640°C, occurs mainly on grain boundaries within quartzo-feldspathic domains. The subsequent mylonitization process resulted in the reworking of graphite under lower temperature conditions (500–600°C), resulting in clustered (in protomylonites) and foliation-aligned graphite (in mylonites). In cataclasites, derived from the mylonitized schists, graphite is most abundant (<50% as opposed to <10% elsewhere), and has two different habits: inherited mylonitic graphite and less mature patches of potentially hydrothermal graphitic carbon. Tectonic–hydrothermal fluid flow was probably important in graphite deposition throughout the examined rock sequences. The increasing abundance of graphite towards the fault zone core may be a significant source of strain localization, allowing fault weakening. Supplementary material: Raman spectra of graphite from the Alpine Fault rocks is available at https://doi.org/10.6084/m9.figshare.c.3911797
The frictional strength of granular fault gouge: application of theory to the mechanics of low-angle normal faults Available to Purchase
Abstract There is a persistent body of literature that suggests low-angle normal faults (LANF) form and slip seismically; if true, the effective friction coefficient is much lower (<0.3) than that found in laboratory tests of rock friction ( c. 0.8) and in low-displacement faults that lack well-developed fault cores. This paper summarizes and discusses the mechanisms proposed to explain the low apparent friction of crustal-scale faults with low resolved shear stresses. Emphasis is placed on differentiating static weakening mechanisms, operating at strain rates c. 10 −12 s −1 –10 −15 s −1 , from dynamic weakening mechanisms, operating at strain rates >10 −1 s −1 . Previous published explanations for low fault friction do not appear to meet the key requirements of (i) reducing both static and dynamic frictional strength of LANF and (ii) operating only along crustal-scale faults. Fault rock assemblages in quartzo-feldspathic continental crust reveal that grain size reduction, or comminution, plays a fundamental role in fault zone development. As a fault accrues displacement, a fault core forms that contains granular material. We postulate that dynamic rock fragmentation occurs during the shearing of confined granular material; dynamic fragmentation is a volume-dependent mechanism responsible for reducing the static and dynamic frictional strengths of faults.