Update search
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
Format
Publisher
GeoRef Subject
-
all geography including DSDP/ODP Sites and Legs
-
Barton Springs (2)
-
United States
-
Texas
-
Balcones fault zone (3)
-
Bexar County Texas (1)
-
Comal County Texas (1)
-
Edwards Aquifer (3)
-
Edwards Plateau (1)
-
Hays County Texas (1)
-
Maverick County Texas (1)
-
Medina County Texas (1)
-
Travis County Texas (2)
-
Trinity Aquifer (2)
-
Uvalde County Texas (1)
-
-
-
-
commodities
-
brines (1)
-
water resources (2)
-
-
geologic age
-
Mesozoic
-
Cretaceous
-
Comanchean
-
Georgetown Formation (1)
-
Trinity Group (1)
-
-
Lower Cretaceous
-
Georgetown Formation (1)
-
Trinity Group (1)
-
-
-
-
-
Primary terms
-
brines (1)
-
diagenesis (1)
-
faults (2)
-
fractures (1)
-
geochemistry (1)
-
ground water (1)
-
Mesozoic
-
Cretaceous
-
Comanchean
-
Georgetown Formation (1)
-
Trinity Group (1)
-
-
Lower Cretaceous
-
Georgetown Formation (1)
-
Trinity Group (1)
-
-
-
-
sedimentary rocks
-
carbonate rocks
-
limestone (1)
-
-
chemically precipitated rocks
-
evaporites (1)
-
-
-
sedimentary structures
-
planar bedding structures
-
bedding (1)
-
-
-
springs (1)
-
United States
-
Texas
-
Balcones fault zone (3)
-
Bexar County Texas (1)
-
Comal County Texas (1)
-
Edwards Aquifer (3)
-
Edwards Plateau (1)
-
Hays County Texas (1)
-
Maverick County Texas (1)
-
Medina County Texas (1)
-
Travis County Texas (2)
-
Trinity Aquifer (2)
-
Uvalde County Texas (1)
-
-
-
water resources (2)
-
-
sedimentary rocks
-
sedimentary rocks
-
carbonate rocks
-
limestone (1)
-
-
chemically precipitated rocks
-
evaporites (1)
-
-
-
-
sedimentary structures
-
sedimentary structures
-
planar bedding structures
-
bedding (1)
-
-
-
GeoRef Categories
Era and Period
Epoch and Age
Book Series
Date
Availability
Multilevel monitoring of the Edwards and Trinity Aquifers Available to Purchase
ABSTRACT Multiport monitor wells have been used by the Barton Springs/Edwards Aquifer Conservation District (BSEACD) to study complex, multilayer, and stacked aquifers in central Texas. Much of the data from water wells that are used for hydrogeological studies are of limited use owing to the thickness of the aquifers, vertical variation in hydraulic properties, and the often-uncertain completion of the wells. To address these concerns, hydrogeologists and engineers have employed various methods, such as installation of nested wells, multilevel completions in a single borehole, and multiport wells. The BSEACD has used multiport wells to determine vertical variations in an aquifer and the hydraulic relationships between stacked aquifers. With multiport wells, properties such as hydraulic head, temperature, hydraulic conductivity, and water quality of discrete units within an aquifer can be determined. The use of multiport wells has shown how portions of the Upper Trinity lithologic units are hydraulically connected to the overlying Edwards lithologic units, and how the Edwards Aquifer is hydraulically isolated from the Middle and Lower Trinity Aquifers.
Water quality and the bad-water (saline-water) zone of the Edwards (Balcones Fault Zone) Aquifer Available to Purchase
ABSTRACT The Edwards aquifers are typically faulted, karstified, and transmissive. Water quality is generally excellent; the hydrochemical facies is mostly a calcium bicarbonate water with total dissolved solids (TDS) <500–1000 mg/L. Exceptions to this result from both natural and anthropogenic factors. In the Edwards Plateau, mixing of the formation water with underlying water from the Trinity aquifers or Permian rocks increases salinity to the west. Along the Balcones fault zone, the southern and eastern borders of the Edwards (Balcones Fault Zone) Aquifer are demarcated by a bad-water line where salinity rises to over 1000 mg/L. Detailed studies show that this line is a band, because salinities in the aquifer are not uniform with depth. The bad-water (or saline-water) zone is relatively stable over time, and six hydrochemical facies were identified, which are created by different combinations of dissolution of evaporite and other minerals, mixing with basinal brines, dedolomitization, and cross-formational flow from underlying formations. Flow in this zone is restricted, the waters are reducing, and recent studies suggest that microbes play important chemical and physical roles. The bad-water zone has sufficient water in storage and sufficient permeability so that desalination could be a future water-source option.
Barton Springs segment of the Edwards (Balcones Fault Zone) Aquifer, central Texas Open Access
ABSTRACT The Barton Springs segment of the Edwards (Balcones Fault Zone) Aquifer is a prolific karst aquifer system containing the fourth largest spring in Texas, Barton Springs. The Barton Springs segment of the Edwards Aquifer supplies drinking water for ~60,000 people, provides habitat for federally listed endangered salamanders, and sustains the iconic recreational Barton Springs pool. The aquifer is composed of Lower Cretaceous carbonate strata with porosity and permeability controlled by depositional facies, diagenesis, structure, and karstification creating a triple permeability system (matrix, fractures, and conduits). Groundwater flow is rapid within an integrated network of conduits discharging at the springs. Upgradient watersheds provide runoff to the recharge zone, and the majority of recharge occurs in the streams crossing the recharge zone. The remainder is direct recharge from precipitation and other minor sources (inflows from Trinity Group aquifers, the San Antonio segment, the bad-water zone, and anthropogenic sources). The long-term estimated mean water budget is 68 ft 3 /s (1.93 m 3 /s). The Barton Springs/Edwards Aquifer Conservation District developed rules to preserve groundwater supplies and maximize spring flow rates by preserving at least 6.5 ft 3 /s (0.18 m 3 /s) of spring flow during extreme drought. A paradox of the Barton Springs segment of the Edwards Aquifer is that rapid recharge allows the Barton Springs segment of the aquifer to be sustainable long term, but the aquifer is vulnerable and limited in droughts. The karstic nature of the aquifer makes the Barton Springs segment vulnerable to a variety of natural and anthropogenic contaminants. Future challenges will include maintaining the sustainability of the aquifer, considering climate change, population growth, and related land-use changes.