- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
GeoRef Subject
-
all geography including DSDP/ODP Sites and Legs
-
South America
-
Chile
-
Atacama Desert (1)
-
-
-
United States
-
Illinois (1)
-
Illinois Basin (2)
-
Indiana (2)
-
Midwest (1)
-
Utah
-
Emery County Utah (1)
-
Wasatch Plateau (1)
-
-
-
-
commodities
-
brines (1)
-
-
elements, isotopes
-
carbon
-
C-13/C-12 (1)
-
-
isotope ratios (1)
-
isotopes
-
stable isotopes
-
C-13/C-12 (1)
-
O-18/O-16 (1)
-
-
-
oxygen
-
O-18/O-16 (1)
-
-
-
geologic age
-
Cenozoic
-
Tertiary
-
Paleogene
-
Eocene
-
lower Eocene (1)
-
-
Flagstaff Formation (1)
-
Paleocene
-
upper Paleocene (1)
-
-
Paleocene-Eocene Thermal Maximum (1)
-
-
-
-
Paleozoic
-
Cambrian
-
Upper Cambrian
-
Eau Claire Formation (1)
-
Mount Simon Sandstone (2)
-
-
-
-
-
minerals
-
nitrates (1)
-
oxides
-
iron oxides (1)
-
-
sulfates
-
mirabilite (1)
-
-
-
Primary terms
-
brines (1)
-
carbon
-
C-13/C-12 (1)
-
-
Cenozoic
-
Tertiary
-
Paleogene
-
Eocene
-
lower Eocene (1)
-
-
Flagstaff Formation (1)
-
Paleocene
-
upper Paleocene (1)
-
-
Paleocene-Eocene Thermal Maximum (1)
-
-
-
-
climate change (1)
-
diagenesis (1)
-
ecology (1)
-
isotopes
-
stable isotopes
-
C-13/C-12 (1)
-
O-18/O-16 (1)
-
-
-
oxygen
-
O-18/O-16 (1)
-
-
paleoclimatology (1)
-
Paleozoic
-
Cambrian
-
Upper Cambrian
-
Eau Claire Formation (1)
-
Mount Simon Sandstone (2)
-
-
-
-
paragenesis (1)
-
pollution (1)
-
remote sensing (1)
-
sedimentary rocks
-
carbonate rocks
-
dolostone (1)
-
limestone (1)
-
-
chemically precipitated rocks
-
evaporites (1)
-
-
clastic rocks
-
mudstone (1)
-
sandstone (2)
-
siltstone (1)
-
-
-
South America
-
Chile
-
Atacama Desert (1)
-
-
-
United States
-
Illinois (1)
-
Illinois Basin (2)
-
Indiana (2)
-
Midwest (1)
-
Utah
-
Emery County Utah (1)
-
Wasatch Plateau (1)
-
-
-
waste disposal (1)
-
-
sedimentary rocks
-
sedimentary rocks
-
carbonate rocks
-
dolostone (1)
-
limestone (1)
-
-
chemically precipitated rocks
-
evaporites (1)
-
-
clastic rocks
-
mudstone (1)
-
sandstone (2)
-
siltstone (1)
-
-
-
Laboratory and field characterization of visible to near-infrared spectral reflectance of nitrate minerals from the Atacama Desert, Chile, and implications for Mars
Lithologic, mineralogical, and petrophysical characteristics of the Eau Claire Formation: Complexities of a carbon storage system seal
ABSTRACT Mineralogical and geochemical data collected from multiple sites on Mars suggest that acid saline surface waters and groundwater existed there in the past. The geologic context and sedimentology suggest that these acid saline waters were associated with groundwater-fed ephemeral lakes. Ephemeral acid saline lakes in southern Western Australia (WA) are some of the few known natural systems that have the same combination of extreme acid brine chemistry and lacustrine depositional setting as is observed on Mars. Thus, the WA acid saline environments provide a modern analog for understanding past depositional and diagenetic processes that may have occurred on Mars. Here, we examine surface sediments and sedimentary rocks that have been in contact with acid (pH down to ∼1.5) and saline brines (total dissolved solids up to ∼32%) in southern Western Australia. Through sedimentological, mineralogical, geochemical, and petrographic analyses, we identify the impacts of early diagenesis in and adjacent to eight acid saline lakes and evaluate the processes that have been important in creating these deposits. The combination of extreme chemistry, spatial variability, arid climate, and reworking by winds and floods contributes to make spatially complex depositional products that are a combination of siliciclastics and chemical sediments. Important syndepositional and very early diagenetic processes in these settings include the chemical precipitation of minerals from shallow groundwaters to form displacive crystals and cements, dissolution/partial dissolution of chemical sediments, replacement/partial replacement of some minerals, cracking due to repeated wetting and drying, and the formation of iron-oxide concretions. Minerals observed in these sediments include a variety of chlorides, sulfates, iron oxides, and phyllosilicates, many of which have textures and mineral associations that suggest authigenic formation. These observations are supported by the chemistry of the modern acid brines, which appear to be supersaturated with respect to these minerals. The range of early diagenetic products, compositions, and textures that are apparent in the WA acid saline lake sediments may provide insights into the processes that influenced the sediments on Mars and the timing of sedimentary formation processes on Mars.
ABSTRACT Concretions are diagenetic products of cementation that establish significant records of groundwater flow through porous sedimentary deposits. Common spheroidal ferric oxide concretions form by diffusive coupled with advective mass transfer and share similar physical characteristics with hematite spherules from Meridiani Planum (Mars “blueberries”), investigated by the Mars Exploration Rover Opportunity. Terrestrial concretions from the Jurassic Navajo Sandstone are not perfect analogs to Mars, particularly in terms of their geochemistry. However, the Navajo Sandstone contains exceptional examples that represent typical concretion characteristics from the geologic record. Both ancient and modern analogs provide information about concretion forming processes and their relationship to porosity and permeability, fluid flow events, subsequent weathering, and surficial reworking. Concretions on Earth possess variable mineralogies and form in a variety of lithologies in formations of nearly all geologic ages. Despite the prevalence of concretions, many unknowns exist, including their absolute ages and their precise nucleation and growth mechanisms. Some opportunities for future concretion research lie in three approaches: (1) New analytical techniques may show geochemical gradients and important textures reflecting biotic (role of bacteria) or abiotic origins. (2) Concretion modeling can determine important formation mechanisms. Sensitivity tests and simulations for different parameters can help show the magnitude of influence for different input factors. (3) New age-dating methods that remove preservational bias and expand the supply of datable material may yield quantitative limits to the timing of diagenetic events beyond what relative cross-cutting relationships can show. The discovery of hematite spherules on Mars has driven efforts to better understand both terrestrial examples of ferric oxide concretions and the competing mechanisms that produce spheroidal geometries. The integration of geologic and planetary sciences continues to encourage new findings in the quest to understand the role of water on Mars as well as the tantalizing possibility that extraterrestrial life is associated with mineral records of watery environments.