Update search
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
Format
Article Type
Journal
Publisher
GeoRef Subject
-
all geography including DSDP/ODP Sites and Legs
-
Asia
-
Far East
-
Indonesia
-
Sumatra (1)
-
-
-
-
Cascadia subduction zone (1)
-
Great Sumatran Fault (1)
-
Indian Ocean (2)
-
Pacific Ocean
-
East Pacific
-
Northeast Pacific
-
Mendocino fracture zone (1)
-
-
-
North Pacific
-
Northeast Pacific
-
Mendocino fracture zone (1)
-
-
-
-
San Andreas Fault (1)
-
United States
-
California (1)
-
-
-
elements, isotopes
-
carbon
-
C-14 (1)
-
-
isotopes
-
radioactive isotopes
-
C-14 (1)
-
Cs-137 (1)
-
Pb-210 (1)
-
-
-
metals
-
alkali metals
-
cesium
-
Cs-137 (1)
-
-
-
lead
-
Pb-210 (1)
-
-
-
-
geochronology methods
-
paleomagnetism (1)
-
-
geologic age
-
Cenozoic
-
Quaternary
-
Holocene
-
upper Holocene (1)
-
-
-
-
-
metamorphic rocks
-
turbidite (3)
-
-
Primary terms
-
absolute age (1)
-
Asia
-
Far East
-
Indonesia
-
Sumatra (1)
-
-
-
-
carbon
-
C-14 (1)
-
-
Cenozoic
-
Quaternary
-
Holocene
-
upper Holocene (1)
-
-
-
-
earthquakes (2)
-
faults (1)
-
geochemistry (1)
-
Indian Ocean (2)
-
isotopes
-
radioactive isotopes
-
C-14 (1)
-
Cs-137 (1)
-
Pb-210 (1)
-
-
-
metals
-
alkali metals
-
cesium
-
Cs-137 (1)
-
-
-
lead
-
Pb-210 (1)
-
-
-
Pacific Ocean
-
East Pacific
-
Northeast Pacific
-
Mendocino fracture zone (1)
-
-
-
North Pacific
-
Northeast Pacific
-
Mendocino fracture zone (1)
-
-
-
-
paleomagnetism (1)
-
plate tectonics (1)
-
sedimentation (1)
-
sediments
-
marine sediments (2)
-
-
tectonics (1)
-
United States
-
California (1)
-
-
well-logging (1)
-
-
sedimentary rocks
-
turbidite (3)
-
-
sediments
-
sediments
-
marine sediments (2)
-
-
turbidite (3)
-
GeoRef Categories
Era and Period
Epoch and Age
Book Series
Date
Availability
A 6600 year earthquake history in the region of the 2004 Sumatra-Andaman subduction zone earthquake Open Access
Can turbidites be used to reconstruct a paleoearthquake record for the central Sumatran margin?: COMMENT Open Access
Earthquake Control of Holocene Turbidite Frequency Confirmed by Hemipelagic Sedimentation Chronology on the Cascadia and Northern California Active Continental Margins Available to Purchase
Abstract This paper analyzes recurrence times of Holocene turbidites as proxies for earthquakes on the Cascadia and northern California active margins of western Northern America. We compare the age, frequency, and recurrence time intervals of turbidites using two methods: (1) radiometric dating ( 14 C method), and (2) relative dating, using hemipelagic sediment thickness and sedimentation rates (H method). The two approaches complement each other, and when used together provide a better age framework than 14 C ages alone. Comparison of hemipelagic sediment thickness in several cores from the same site is used to evaluate the erosiveness of turbidity currents and improve the correlation of turbidites and consequent paleoseismic history based only on less complete and unrefined data sets of 14 C turbidite ages along the continental margin. Chronology of hemipelagic sediment thickness provides (1) the best estimate of minimum recurrence times, which are the most important for seismic hazards risk analysis, and (2) the most complete dataset of recurrence times, which shows a normal distribution pattern for paleoseismic turbidite frequencies. We observe that on these tectonically active continental margins, during the sea-level highstand of Holocene time, triggering of turbidity currents is controlled dominantly by earthquakes, and paleoseismic turbidites have an average recurrence time of ~ 550 yr in northern Cascadia Basin and ~ 200 yr along northern California margin. This difference in frequency of turbidites in a subduction zone compared to a transform-fault margin suggests significant differences in earthquake activity that compare favorably with independent paleoseismic indicators.