- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
- Abstract
- Affiliation
- All
- Authors
- Book Series
- DOI
- EISBN
- EISSN
- Full Text
- GeoRef ID
- ISBN
- ISSN
- Issue
- Keyword (GeoRef Descriptor)
- Meeting Information
- Report #
- Title
- Volume
NARROW
GeoRef Subject
-
all geography including DSDP/ODP Sites and Legs
-
Atlantic Ocean (1)
-
Indian Ocean
-
Somali Basin (1)
-
-
-
elements, isotopes
-
oxygen (1)
-
-
fossils
-
Invertebrata
-
Protista
-
Foraminifera (1)
-
-
-
microfossils (1)
-
-
geologic age
-
Cenozoic
-
Tertiary
-
Neogene
-
Miocene (1)
-
-
-
-
-
Primary terms
-
Atlantic Ocean (1)
-
Cenozoic
-
Tertiary
-
Neogene
-
Miocene (1)
-
-
-
-
Deep Sea Drilling Project
-
Leg 22
-
DSDP Site 216 (1)
-
-
Leg 24
-
DSDP Site 237 (1)
-
-
Leg 42A
-
DSDP Site 372 (1)
-
-
-
Indian Ocean
-
Somali Basin (1)
-
-
Invertebrata
-
Protista
-
Foraminifera (1)
-
-
-
ocean circulation (1)
-
Ocean Drilling Program
-
Leg 115
-
ODP Site 707 (1)
-
ODP Site 709 (1)
-
ODP Site 710 (1)
-
-
Leg 121
-
ODP Site 758 (1)
-
-
-
ocean floors (1)
-
oxygen (1)
-
sea water (1)
-
sedimentation (1)
-
Benthic foraminiferal evidence for the existence of an early Miocene oxygen-depleted oceanic water mass?
Sedimentary hiatuses as indicators of fluctuating oceanic water masses: a new model
Abstract Fluctuations in the rate of solution of cnlcium carbonate, and in the calcium carbonate compensation depth have occurred since the Jurassic The alternating dissolution facies in calcareous sequences in oceanic basins show that fluctuations in the rate of solution can have a duration of 250,000 years or less. The oscillatory nature of the calcium carbonate compensation depth is attributed primarily to changes in plankton productivity, particularly in the high latitude fertile belts which result from global variations in temperature, through time. Warm periods, which are associated with high productivity and possibly with increased oceanic mixing, are characterized by an increase in the removal of carbonate by organisms, deposition of carbonates in high latitudes, and the enhanced solution of calcareous tests and an elevated compensation level in mid-latitudes. Cold periods correspond to intervals of low surface productivity which in high latitudes leads to a decrease in the diversity of calcareous species and a reduction in the rate of carbonate deposition; in the mid-latitudes these changes in surface productivity are reflected by a decrease in the rate of carbonate solution, depression of the compensation depth, and an increase in the distribution of carbonates. The areal distribution of carbonates at any one time is attributed to a combination of surface topography and the position of the calcium carbonate compensation depth. Palaeobathymetric models of the Tertiary Atlantic indicate an approximately twofold increase in the areal extent of sediments of the hololytic facies (red clays and/or biogenic siliceous ooze) in this basin during periods of maximum elevation of the calcium carbonate compensation depth. Changes in surface productivity and the associated fluctuations in the compensation depth may provide a unifying concept for pelagic sedimentation in the Mesozoic to Recent oceans. Apart from the carbonate cycles which are differentially developed in high and mid-latitudes, increases in the extent of organic siliceous ooze and the formation of cherts in Late Cretaceous and Eocene equatorial sequences correspond with intervals when the compensation depth was elevated. It is also possible that submarine lithification and the formation of hardgrounds in the oceanic environment may be related to the low rates of sedimentation which accompanied periods of enhanced carbonate solution.