Tetrahedral aluminum in tourmaline from a spinel-pargasite-metamorphosed mafic-ultramafic rock
Tetrahedral aluminum in tourmaline from a spinel-pargasite-metamorphosed mafic-ultramafic rock
American Mineralogist (November 2024) 109 (11): 1841-1849
- amphibole group
- chain silicates
- clinoamphibole
- crystal chemistry
- crystal growth
- electron microscopy data
- electron probe data
- formula
- FTIR spectra
- ICP mass spectra
- igneous rocks
- infrared spectra
- laser ablation
- laser methods
- mafic composition
- mass spectra
- Mossbauer spectra
- oxides
- pargasite
- plutonic rocks
- polyhedra
- refinement
- ring silicates
- SEM data
- silicates
- single-crystal method
- spectra
- spinel
- substitution
- tetrahedra
- tourmaline group
- ultramafics
- X-ray diffraction data
- Tschermak substitution
Tourmaline is a widespread borosilicate mineral that is well known for its variable chemistry. Although a major amount of octahedral Al in tourmaline is commonplace, the occurrence of significant amounts of tetrahedral Al is relatively rare. This paper focuses on tourmaline from the collection of the A. E. Fersman Mineralogical Museum (Russia) originated from Italy with up to 25% of Si replaced by Al at the tetrahedral site. The tourmaline is characterized by optical and scanning electron microscopy, Raman spectroscopy, infrared spectroscopy, Mossbauer spectroscopy, energy-dispersive and wavelength-dispersive X-ray analysis, laser ablation inductively coupled plasma optical emission spectrometry and single-crystal X-ray diffraction. The studied tourmaline occurs as transparent dark blue crystals (with equant external morphology) up to 3 mm in size and forms veinlets cutting a (Mg,Al)-rich metamorphosed mafic-ultramafic rock (Mg>>Fe) composed of spinel, pargasite, clinochlore, phlogopite, and hydroxylapatite. The studied tourmaline meets the criteria defining magnesio-lucchesiite and can be compositionally formed via Tschermak-like ( (super [6]) Me (super 2+) + (super [4]) Si (super 4+) <--> (super [6]) Al (super 3+) + (super [4]) Al (super 3+) , where (super [6]) Me (super 2+) =Mg,Fe) or plagioclase-like ( (super [9]) Ca (super 2+) + (super [4]) Al (super 3+) <--> (super [9]) Na (super +) + (super [4]) Si (super 4+) ) substitutions. Zones with a relatively high Si content (Si-rich) have pronounced indications of dissolution, while silicon-depleted zones (Si-poor) overgrow Si-rich zones, eventually creating a visible replacement zone of the crystal. We suggest that Si-poor tourmaline results from the Si-rich tourmaline losing Si during a metasomatic process. The resulting empirical crystal-chemical formula for the Si-poor zone is: (super X) (Ca (sub 0.95) Na (sub 0.03) [] (sub 0.02) ) (sub Sigma 1.00) (super Y) (Mg (sub 1.08) Al (sub 0.98) Fe (super 2+) (sub 0.50) Fe (super 3+) (sub 0.43) ) (sub Sigma 3.00) (super Z) (Al (sub 5.91) Fe (super 3+) (sub 0.09) ) (sub Sigma 6.00) (super T) [(Si (sub 4.57) Al (sub 1.43) ) (sub Sigma 6.00) O (sub 18) ](BO (sub 3) ) (sub 3) (super V) (OH) (sub 3) (super W) [O (sub 0.95) (OH) (sub 0.05) ] (sub Sigma 1.00) [a=15.9811(2), c=7.12520(10) Aa, R1=1.7%] and for the Si-rich zone is: (super X) (Ca (sub 0.89) Na (sub 0.11) ) (sub Sigma 1.00) (super Y) (Mg (sub 1.55) Al (sub 0.80) Fe (super 2+) (sub 0.34) Fe (super 3+) (sub 0.31) ) (sub Sigma 3.00) (super Z) (Al (sub 5.51) Mg (sub 0.44) Fe (super 3+) (sub 0.05) ) (sub Sigma 6.00) (super T) [(Si (sub 5.35) Al (sub 0.65) ) (sub Sigma 6.00) O (sub 18) ](BO (sub 3) ) (sub 3) (super V) (OH) (sub 3) (super W) [O (sub 0.93) (OH) (sub 0.07) ] (sub Sigma 1.00) [a=15.9621(3), c=7.14110(10) Aa, R1=1.7%]. According to pressure-temperature (P-T) calculations of mineral assemblage stability and comparable data on synthetic (super [4) ]Al-rich tourmalines, the studied tourmaline was formed at 600-750 degrees C and 0.10-0.20 GPa. The formation of tetrahedral Al-rich tourmalines requires several unusual factors: (1) desilication of primary rocks and (2) high temperatures and relatively low pressures.