Skip to Main Content
Skip Nav Destination
GEOREF RECORD

Similarities and contrasts between the subaerial and subaqueous deposits of subaerially triggered debris flows; an analogue experimental study

Tjalling de Haas, Nikoleta Santa, Sjoukje I. de Lange and Shiva P. Pudasaini
Similarities and contrasts between the subaerial and subaqueous deposits of subaerially triggered debris flows; an analogue experimental study
Journal of Sedimentary Research (September 2020) 90 (9): 1128-1138

Abstract

Debris flows and lahars are dense masses of water and sediment which are common phenomena in mountainous and volcanic regions, respectively. Where these flows debouch into water bodies they can trigger impulse waves (tsunamis) and form subaqueous deposits. Such deposits are important indicators for areas at risk from debris flows, lahars, and tsunamis and form archives of past environmental conditions. Correctly interpreting this archive, however, depends on our understanding of the sedimentology and architecture of the deposits. While subaerial debris-flow deposits have been extensively studied, there is a comparative lack of understanding of the deposits of subaerial debris flows that debouch into a water body. We experimentally investigate the similarities and contrasts between subaerial and subaqueous debris-flow deposits for flows of various magnitudes and compositions initiated in a subaerial environment. We show that flows depositing on a subaqueous plane generally have a deposit area similar to flows forming in a subaerial setting. Deposits forming on a subaqueous plane, however, are typically shorter and wider with similar thickness, as a result of interactions between the flow and the reservoir water body. Both in subaerial and subaqueous environments the deposits form coarse-grained lateral levees and frontal snout margins. However, where the levees are able to laterally confine the subaerial flows leading to deposits with constant to tapering width, the subaqueous deposits widen with distance offshore because of flow fluidization. Moreover, the frontal snout is often very dispersed, a sharp frontal margin is absent, and many isolated particles are deposited in front of the main deposit margin as a result of interactions between the debris flow and the reservoir water body. These results largely agree with observations of subaqueous pyroclastic-flow deposits. The similarity in area of subaerial and subaqueous deposits suggests that we can apply empirical relations based on subaerial flows to estimate the inundation area and flow volume of subaerial-subaqueous flows.


ISSN: 1527-1404
EISSN: 1938-3681
Serial Title: Journal of Sedimentary Research
Serial Volume: 90
Serial Issue: 9
Title: Similarities and contrasts between the subaerial and subaqueous deposits of subaerially triggered debris flows; an analogue experimental study
Affiliation: Utrecht University, Department of Physical Geography, Utrecht, Netherlands
Pages: 1128-1138
Published: 202009
Text Language: English
Publisher: Society for Sedimentary Geology, Tulsa, OK, United States
References: 73
Accession Number: 2021-000923
Categories: Sedimentary petrology
Document Type: Serial
Bibliographic Level: Analytic
Illustration Description: illus.
Secondary Affiliation: University of Bonn, DEU, Germany
Country of Publication: United States
Secondary Affiliation: GeoRef, Copyright 2020, American Geosciences Institute. Reference includes data from GeoScienceWorld, Alexandria, VA, United States. Reference includes data supplied by SEPM (Society for Sedimentary Geology), Tulsa, OK, United States
Update Code: 2021

or Create an Account

Close Modal
Close Modal