Skip to Main Content
Skip Nav Destination
GEOREF RECORD

Structural anatomy of the early Paleozoic Laohushan Ophiolite and subduction complex; implications for accretionary tectonics of the Proto-Tethyan north Qilian orogenic belt, northeastern Tibet

Fu Dong, Timothy M. Kusky, Simon A. Wilde, Brian F. Windley, Ali Polat, Huang Bo and Zhou Zhipeng
Structural anatomy of the early Paleozoic Laohushan Ophiolite and subduction complex; implications for accretionary tectonics of the Proto-Tethyan north Qilian orogenic belt, northeastern Tibet
Geological Society of America Bulletin (March 2020) 132 (9-10): 2175-2201

Abstract

Recognition of accretionary tectonics in ancient orogenic collages is important for reconstructing the long-term subduction, accretion, and erosional history of fossil convergent margins, and for understanding crustal growth and supercontinent assembly. The North Qilian orogenic belt (NQOB), located between the Alxa block and the Central Qilian-Qaidam block in northeastern Tibet, is a typical Phanerozoic accretionary-to-collisional orogenic belt that represents the termination of the northern branch of the Proto-Tethys Ocean. It contains two subparallel ophiolitic belts, arcs, and subduction complexes; the ophiolitic rocks in the northern belt have generally been considered to have formed in a back-arc setting. However, the subduction-accretion-collision history, subduction polarity, and timing of closure of the back-arc ocean remain equivocal. To address these problems, we conducted detailed field, structural, and geochronological investigations of the Laohushan ophiolite-accretionary complex and related sedimentary rocks in the eastern NQOB. The Laohushan Complex is divisible into (1) a northern sedimentary forearc, and a supra-subduction zone-type ultramafic-mafic forearc (ca. 450 Ma) composed of serpentinized harzburgite, gabbro, basalt, and plagiogranite; and (2) a southern accretionary complex, which consists of relatively coherent basalt-chert-mudstone ocean plate stratigraphy that is structurally repeated many times, trench-fill turbidites, melanges, and widespread thrust imbricates and duplexes, block-in-matrix and asymmetric structures. Kinematic analysis indicates that the accretionary complex underwent southward thrusting and shearing; coupled with the spatial architecture of the different tectonic units, which suggests northward subduction beneath the northern forearc on the southern margin of the Alxa block. Detrital zircon ages of forearc clastic sandstones, pelagic mudstones, trench-fill turbidites, and the matrix of melanges, together with the zircon ages of igneous ophiolitic rocks and post-accretionary intrusions, indicate that the terminal accretion and tectonic stacking of the Laohushan subduction complex was between ca. 447 and 430 Ma. We propose a geodynamic model involving back-arc basin opening (ca. 517-449 Ma), intra-oceanic subduction-accretion (ca. 449-430 Ma), and final obduction of the northern forearc to account for the evolutionary processes of the North Qilian back-arc basin. The anatomy of the forearc ophiolite and structurally lower accretionary complex indicates the complicated origins and mechanism of emplacement of the ophiolitic rocks. Field-based reconstruction of accretionary complexes and upper plate ophiolites, together with provenance analysis of related sedimentary sequences, provide crucial constraints on the prolonged evolution of paleo-ocean basins and accretionary-to-collisional orogens.


ISSN: 0016-7606
EISSN: 1943-2674
Coden: BUGMAF
Serial Title: Geological Society of America Bulletin
Serial Volume: 132
Serial Issue: 9-10
Title: Structural anatomy of the early Paleozoic Laohushan Ophiolite and subduction complex; implications for accretionary tectonics of the Proto-Tethyan north Qilian orogenic belt, northeastern Tibet
Affiliation: China University of Geosciences-Wuhan, School of Earth Sciences, Center for Global Tectonics, Wuhan, China
Pages: 2175-2201
Published: 20200310
Text Language: English
Publisher: Geological Society of America (GSA), Boulder, CO, United States
References: 161
Accession Number: 2020-028723
Categories: Igneous and metamorphic petrologyGeochronology
Document Type: Serial
Bibliographic Level: Analytic
Annotation: GSA Data Repository item 2020135
Illustration Description: illus. incl. sects., geol. sketch maps
N27°00'00" - N37°00'00", E79°00'00" - E99°00'00"
Secondary Affiliation: Curtin University, AUS, AustraliaUniversity of Leicester, GBR, United Kingdom
Country of Publication: United States
Secondary Affiliation: GeoRef, Copyright 2022, American Geosciences Institute. Reference includes data from GeoScienceWorld, Alexandria, VA, United States. Reference includes data supplied by the Geological Society of America, Boulder, CO, United States
Update Code: 202019

or Create an Account

Close Modal
Close Modal