Skip to Main Content
Skip Nav Destination

Pliocene paleoenvironments in the Meade Basin, southwest Kansas, U.S.A.

William E. Lukens, David L. Fox, Kathryn E. Snell, Logan A. Wiest, Anthony L. Layzell, Kevin T. Uno, Pratigya J. Polissar, Robert A. Martin, Kena Fox-Dobbs and Pablo Pelaez-Campomanes
Pliocene paleoenvironments in the Meade Basin, southwest Kansas, U.S.A.
Journal of Sedimentary Research (May 2019) 89 (5): 416-439


Terrestrial paleoenvironmental reconstructions from the Pliocene Epoch (5.3-2.6 Ma) of the Neogene Period are rare from the North American continental interior, but are important because they provide insight into the evolutionary context of modern landscapes and ecological systems. Pliocene marine records indicate that global climate was warmer and atmospheric pCO (sub 2) was higher than pre-industrial conditions, spurring efforts to understand regional climate and environmental variability under conditions potentially analogous to future warming scenarios. In this study, we investigate sedimentary environments and paleoclimate conditions from the Meade Basin of southwest Kansas, a moderately sized basin formed from dissolution and withdrawal of deep evaporites. Pliocene intervals of the Meade Basin have yielded classic faunal assemblages representing the early to middle Blancan North American Land Mammal Age ( approximately 4.5-3.2 Ma). We reconstruct the paleoenvironments using a multidisciplinary approach of lithofacies analysis, paleopedology, and ichnology. The stratigraphic interval we examined is bounded by large-scale, fluvial trunk channels that show paleocurrent trends to the south-southwest-tangential to modern drainages-likely due to local halotectonic subsidence during the Neogene. The stratigraphic interval between these fluvially dominated phases consists of palustrine landscapes with temporally and laterally variable subaqueous and subaerial facies. Paleosols are abundant; however, most pedotypes are poorly to variably drained, and so their elemental compositions do not reflect local climate state. The few mature, oxidized, and relatively well-drained paleosols observed contain elemental signatures consistent with subhumid climate conditions. Frequent and recursive ponding events are discerned through the tiering of burrows (Camborygma isp.) similar to those produced by modern freshwater decapod crustaceans (i.e., crayfish). The drivers of these flooding events are most likely episodic halotectonic subsidence and groundwater discharge, though influence from intervals of relatively wetter climate cannot be ruled out. By the late middle Pliocene, landscapes returned to fluvially dominated environments as sedimentation began to outpace accommodation. Our results collectively indicate that climate was likely wetter than modern conditions in the early to middle Pliocene in the western Great Plains, contrary to forecasts for the region under current pCO (sub 2) -driven warming.

ISSN: 1527-1404
EISSN: 1938-3681
Serial Title: Journal of Sedimentary Research
Serial Volume: 89
Serial Issue: 5
Title: Pliocene paleoenvironments in the Meade Basin, southwest Kansas, U.S.A.
Affiliation: University of Louisiana at Lafayette, School of Geosciences, Lafayette, LA, United States
Pages: 416-439
Published: 201905
Text Language: English
Publisher: Society for Sedimentary Geology, Tulsa, OK, United States
Accession Number: 2019-081142
Categories: Sedimentary petrology
Document Type: Serial
Bibliographic Level: Analytic
N37°17'08" - N37°17'08", W100°20'25" - W100°20'25"
Secondary Affiliation: University of Minnesota-Minneapolis, USA, United StatesUniversity of Colorado, USA, United StatesBaylor University, USA, United StatesKansas Geological Survey, USA, United StatesLamont-Doherty Earth Observatory, USA, United StatesMurray State University, USA, United StatesUniversity of Puget Sound, USA, United StatesNational Museum of Natural History, ESP, Spain
Country of Publication: United States
Secondary Affiliation: GeoRef, Copyright 2020, American Geosciences Institute. Reference includes data from GeoScienceWorld, Alexandria, VA, United States. Reference includes data supplied by SEPM (Society for Sedimentary Geology), Tulsa, OK, United States
Update Code: 201943
Close Modal

or Create an Account

Close Modal
Close Modal