Skip to Main Content
Skip Nav Destination

Stratigraphic relationships along the monoclinal eastern base of Bald Ridge and northwestern edge of Wyoming's Bighorn Basin, U.S.A.

Jason A. Lillegraven
Stratigraphic relationships along the monoclinal eastern base of Bald Ridge and northwestern edge of Wyoming's Bighorn Basin, U.S.A.
Rocky Mountain Geology (December 2019) 54 (2): 47-95


This geologic study is focused on a less than 5 square-mile (ca. 13 km2) tract of public land in northwestern Wyoming, 8 miles (12.9 km) south-southwest of the small town of Clark in Park County. The study area is south of Clarks Fork of Yellowstone River along the eastern base of the topographic feature called Bald Ridge, also known structurally as Dead Indian monocline. Since the Middle Eocene, the study area has been along the northwestern margin of the Bighorn Basin. Prior to that time, the study area existed near the west-east center of the basin. Bald Ridge became elevated late in the Laramide orogeny (no older than the Early Eocene) through east-directed faulting of basement rocks via the extensive Line Creek-Oregon Basin thrust system. As that active faulting occurred, the overlying Phanerozoic strata (Lower Cambrian through Lower Eocene) responded with numerous west-directed, out-of-the-basin thrusts as a new western-basin margin developed along the eastern realm of the newly born Absaroka volcanic field. Most of that deformation occurred after deposition of uppermost levels of the Lower Eocene Willwood Formation. The key purpose of the present paper was to improve the accuracy of mapping of the Jurassic into Eocene stratigraphy along the newly restricted, northwestern edge of Wyoming's Bighorn Basin. The stratigraphic column in a north-south band along the eastern flank of the Beartooth Mountains and continuing southward into the present study area was markedly deformed and deeply eroded late during the Laramide orogeny. The present small, more southerly study area is structurally and erosionally simpler than its more northerly equivalent. Thus, its study adds important geological information to the history of the northern Cody Arch, a convex-westward string of related basement-involved uplifts extending southward to southwest of the city of Cody. Progressively steepening eastward dips of strata characterize a west-to-east transect from the summit of Bald Ridge (capped by the shallowly dipping, Mississippian Madison Limestone) to the western edge of strongly overturned outcrops of the Eocene Willwood Formation. The Upper Cretaceous Meeteetse Formation is the stratigraphic horizon at which the dips attain vertical or slightly overturned orientations. All consequential faults within the newly mapped area are thrusts, and they show generally westward (out-of-the-basin) displacements. Despite those west-directed displacements, their primary cause was tectonic shortening at depth below Bald Ridge that was directed to the northeast or east-northeast. During the Laramide orogeny, certain thrust planes within the east-dipping Phanerozoic rock column cut down-section stratigraphically (but uphill relative to Earth's surface) and thereby placed younger strata upon older. The cumulative result, as recognized at several levels within the present area of study, was marked thinning of the total section. For example, surface exposures of the mostly Paleocene Fort Union Formation, 4,000 feet (1,219 m) thick only 7 miles (11.3 km) to the east, was completely eliminated from the local surface stratigraphy by that means. The northern end of Bald Ridge is formed by the highly asymmetric Canyon Mouth anticline. That structure differs strongly in the attitude of its hinge line from the general east-northeast dip of strata cloaking Bald Ridge. The Canyon Mouth anticline's hinge line plunges steeply to the southeast, and dips on its northeastern flanks are vertical to partly overturned. Surprisingly, hinge lines and flanks of all other anticlinal/synclinal structures recognized within the present map area share those same orientations with Canyon Mouth anticline. These consistent but unexpected differences in orientation from unfolded strata may represent very late events in the history of Laramide strain vectors across the study area. Working in northern parts of this study area, an independent group determining radiometric ages of detrital-zircon grains reported close agreements in age with their host localities in the Early Cretaceous Mowry Shale and Frontier Formation. However, under the present paper's interpretation of the local stratigraphy, the other workers misidentified formational hosts for all three samplings. That resulted in age-determination errors of depositional history within the Upper Cretaceous section of as much as 28.8 million years.

ISSN: 1555-7332
EISSN: 1555-7340
Serial Title: Rocky Mountain Geology
Serial Volume: 54
Serial Issue: 2
Title: Stratigraphic relationships along the monoclinal eastern base of Bald Ridge and northwestern edge of Wyoming's Bighorn Basin, U.S.A.
Affiliation: University of Wyoming, Departments of Geology, Geophysics and Zoology, Physiology, Laramie, WY, United States
Pages: 47-95
Published: 201912
Text Language: English
Publisher: University of Wyoming, Dept. of Geology and Geophysics, Laramie, WY, United States
References: 38
Accession Number: 2020-003968
Categories: Structural geologyStratigraphy
Document Type: Serial
Bibliographic Level: Analytic
Illustration Description: illus. incl. chart, sects., 1 table, geol. sketch maps
N43°47'60" - N45°00'00", W111°02'60" - W108°34'60"
Country of Publication: United States
Secondary Affiliation: GeoRef, Copyright 2020, American Geosciences Institute. Abstract, copyright, University of Wyoming. Reference includes data from GeoScienceWorld, Alexandria, VA, United States
Update Code: 202002
Close Modal

or Create an Account

Close Modal
Close Modal