Skip to Main Content
Skip Nav Destination
GEOREF RECORD

Sequestration and subduction of deep-sea carbonate in the global ocean since the Early Cretaceous

Adriana Dutkiewicz, R. Dietmar Mueller, John Cannon, Sioned Vaughan and Sabin Zahirovic
Sequestration and subduction of deep-sea carbonate in the global ocean since the Early Cretaceous
Geology (Boulder) (December 2018) 47 (1): 91-94

Abstract

Deep-sea carbonate represents Earth's largest carbon sink and one of the least-known components of the long-term carbon cycle that is intimately linked to climate. By coupling the deep-sea carbonate sedimentation history to a global tectonic model, we quantify this component within the framework of a continuously evolving seafloor. A long-term increase in marine carbonate carbon flux since the mid-Cretaceous is dominated by a post-50 Ma doubling of carbonate accumulation to approximately 310 Mt C/yr at present-day. This increase was caused largely by the immense growth in deep-sea carbonate carbon storage, post-dating the end of the Early Eocene Climate Optimum. We suggest that a combination of a retreat of epicontinental seas, underpinned by long-term deepening of the seafloor, the inception of major Himalayan river systems, and the weathering of the Deccan Traps drove enhanced delivery of Ca (super 2+) and HCO (sub 3) (super -) into the oceans and atmospheric CO (sub 2) drawdown in the 15 m.y. prior to the onset of glaciation at ca. 35 Ma. Relatively stagnant mid-ocean ridge, rift- and subduction-related degassing during this period support our contention that continental silicate weathering, rather than a major decrease in CO (sub 2) degassing, may have triggered an increase in marine carbonate accumulation and long-term Eocene global cooling. Our results provide new constraints for global carbon cycle models, and may improve our understanding of carbonate subduction-related metamorphism, mineralization and isotopic signatures of degassing.


ISSN: 0091-7613
EISSN: 1943-2682
Coden: GLGYBA
Serial Title: Geology (Boulder)
Serial Volume: 47
Serial Issue: 1
Title: Sequestration and subduction of deep-sea carbonate in the global ocean since the Early Cretaceous
Affiliation: University of Sydney, School of Geosciences, Sydney, N.S.W., Australia
Pages: 91-94
Published: 20181212
Text Language: English
Publisher: Geological Society of America (GSA), Boulder, CO, United States
References: 29
Accession Number: 2019-007038
Categories: General geochemistryStratigraphy
Document Type: Serial
Bibliographic Level: Analytic
Annotation: GSA Data Repository item 2019038
Illustration Description: illus. incl. geol. sketch maps
Country of Publication: United States
Secondary Affiliation: GeoRef, Copyright 2019, American Geosciences Institute. Reference includes data from GeoScienceWorld, Alexandria, VA, United States. Reference includes data supplied by the Geological Society of America, Boulder, CO, United States
Update Code: 201906

or Create an Account

Close Modal
Close Modal