Skip to Main Content
Skip Nav Destination
GEOREF RECORD

Tuning the photophysical properties of cyanine dyes with clay minerals

Peter Bohac and Juraj Bujdak
Tuning the photophysical properties of cyanine dyes with clay minerals
Clays and Clay Minerals (April 2018) 66 (2): 127-137

Abstract

-Dye molecular aggregation and other interactions on clay mineral surfaces cause phenomena such as methachromasy (change in color), fluorescence enhancement, or quenching, which represent significant changes in the spectral properties of the dye. These phenomena can be used to control the photophysical properties of hybrid systems based on cationic organic dyes. In the present study, the aggregation of two structurally similar cyanine dyes, 3,3'-diethyl-oxocyanine iodide (OxCy) and 3,3'-diethyl-2,2'-thiacyanine iodide (ThCy), in colloidal dispersions of three smectites (saponite, hectorite, and montmorillonite) was studied by absorption and fluorescence spectroscopy for a broad range of dye/smectite loadings. Spectral data were analysed by chemometric methods (principal component analysis, PCA, and multivariate curve resolution, MCR). Detailed analysis of the OxCy absorption spectra by the chemometric methods revealed the formation of two types of oblique aggregates exhibiting light absorption in both H- and J-bands. The existence of such similar aggregates, with similar splitting of excitation energies, appears to be related to the existence of two stable conformational isomers of this dye. On increasing the smectite CEC and dye/smectite loading, fluorescence quenching occurred. The ThCy dye exhibited a stronger tendency for molecular aggregation than OxCy. On increasing the smectite CEC, the formation of oblique aggregates with dominant H-bands also increased. On aging of the hybrid dispersions, equilibria of ThCy aggregates were shifted to the species with dominant J-bands. This behavior had a significant impact on the shape and intensity of the fluorescence emission of the hybrid dispersions. Using different smectites enables control of the dye aggregation and significant change to the photophysical properties of the hybrid systems. These systems can be used for the detailed study of the photophysical properties of cyanine dyes in various states. The colloidal systems with cyanine dyes can be used as precursors for the preparation of novel hybrid materials. In addition, the sensitive response of the photophysical properties of cyanine dyes to the clay mineral surface can be applied to the characterization of clay minerals.


ISSN: 0009-8604
EISSN: 1552-8367
Coden: CLCMAB
Serial Title: Clays and Clay Minerals
Serial Volume: 66
Serial Issue: 2
Title: Tuning the photophysical properties of cyanine dyes with clay minerals
Affiliation: Slovak Academy of Sciences, Institute of Inorganic Chemistry, Bratislava, Slovakia
Pages: 127-137
Published: 201804
Text Language: English
Publisher: Clay Minerals Society, Chantilly, VA, United States
References: 46
Accession Number: 2018-080091
Categories: Geochemistry of rocks, soils, and sedimentsSedimentary petrology
Document Type: Serial
Bibliographic Level: Analytic
Illustration Description: illus. incl. 1 table
Secondary Affiliation: Comenius University in Bratislava, SVK, Slovakia
Country of Publication: United States
Secondary Affiliation: GeoRef, Copyright 2018, American Geosciences Institute. Abstract, Copyright, Clay Minerals Society. Reference includes data from GeoScienceWorld, Alexandria, VA, United States
Update Code: 201844
Close Modal

or Create an Account

Close Modal
Close Modal