Skip to Main Content
Skip Nav Destination

Late Neogene-Quaternary tephrochronology, stratigraphy, and paleoclimate of Death Valley, California, USA

Jeffrey R. Knott, Michael N. Machette, Elmira Wan, Ralph E. Klinger, Joseph C. Liddicoat, Andrei M. Sarna-Wojcicki, Robert J. Fleck, Alan L. Deino, John W. Geissman, Janet L. Slate, David B. Wahl, Brian P. Wernicke, Stephen G. Wells, John C. Tinsley, Jeffrey C. Hathaway and Veva M. Weamer
Late Neogene-Quaternary tephrochronology, stratigraphy, and paleoclimate of Death Valley, California, USA
Geological Society of America Bulletin (January 2018) 130 (7-8): 1231-1255


Sedimentary deposits in mid-latitude continental basins often preserve a paleoclimate record complementary to marine-based records. However, deriving that paleoclimate record depends on having well-exposed deposits and establishing a sufficiently robust geochronology. After decades of research, we have been able to correlate 77 tephra beds exposed in multiple stratigraphic sections in the Death Valley area, California, United States. These correlations identify 25 different tephra beds that erupted from at least five different volcanic centers from older than 3.58 Ma to ca. 32 ka. We have informally named and determined the ages for seven previously unrecognized beds: ca. 3.54 Ma tuff of Curry canyon, ca. 3.45 Ma tuff of Furnace Creek, ca. 3.1 Ma tuff of Kit Fox Hills, ca. 3.1 Ma tuff of Mesquite Flat, ca. 3.15 Ma tuff of Texas Spring, 3.117 + or - 0.011 Ma tuff of Echo Canyon, and the ca. 1.3 Ma Amargosa ash bed. Several of these tephra beds are found as far northeast as central Utah and could be important marker beds in western North America. Our tephrochronologic data, combined with magnetic polarity data and (super 40) Ar/ (super 39) Ar age determinations, redefine Neogene sedimentary deposits exposed across 175 km (super 2) of the Death Valley area. The alluvial/lacustrine Furnace Creek Formation is a time-transgressive sedimentary sequence ranging from ca. 6.0 to 2.5 Ma in age. The ca. 2.5-1.7 Ma Funeral Formation is typically exposed as a proximal alluvial-fan facies overlying the Furnace Creek Formation. We have correlated deposits in the Kit Fox Hills, Salt Creek, Nova Basin, and southern Death Valley with the informally named ca. 1.3-0.5 Ma Mormon Point formation. In addition, our correlation of the late Pleistocene Wilson Creek ash bed 15 in the Lake Rogers deposits represents the first unambiguous sequences deposited during the Last Glacial Maximum (marine isotope stage [MIS] 2) in Death Valley. Based on this new stratigraphic framework, we show that the Pliocene and Pleistocene climate in Death Valley is consistent with the well-established marine tropical/subtropical record. Pluvial lakes in Death Valley and Searles Valley began to form ca. 3.5-3.4 Ma in the late Pliocene during MIS MG5. Initiation of lakes in these two hydrologically separated valleys at the same time at the beginning of a cooling trend in the marine climate record suggests a link to a cooler, wetter (glacial) regional climate in North America. The Death Valley lake persisted until ca. 3.30 Ma, at the peak of the M2 glaciation, after which there is no evidence of Pliocene lacustrine deposition, even at the peak of the Northern Hemisphere Glaciation (ca. 2.75 Ma). If pluvial lakes in the Pliocene are an indirect record of glacial climate conditions, as they are for the Pleistocene, then a glacial climate was present in western North America for approximately 200,000 yr during the Pliocene, encompassing MIS MG5-M2. Pleistocene pluvial lakes in Death Valley that formed ca. 1.98-1.78 Ma, 1.3-1.0 Ma, and ca. 0.6 Ma (MIS 16) are consistent with other regional climate records that indicate a regional glacial climate; however, Death Valley was relatively dry at ca. 0.77 Ma (MIS 19), when large lakes existed in other basins. The limited extent of the MIS 2 marsh/shallow lake in the Lake Rogers basin of northern Death Valley reflects the well-known regional glacial climate at that time; however, Death Valley received relatively lower inflow and rainfall in comparison.

ISSN: 0016-7606
EISSN: 1943-2674
Serial Title: Geological Society of America Bulletin
Serial Volume: 130
Serial Issue: 7-8
Title: Late Neogene-Quaternary tephrochronology, stratigraphy, and paleoclimate of Death Valley, California, USA
Affiliation: California State University, Department of Geological Sciences, Fullerton, CA, United States
Pages: 1231-1255
Published: 20180102
Text Language: English
Publisher: Geological Society of America (GSA), Boulder, CO, United States
References: 98
Accession Number: 2018-032327
Categories: StratigraphyGeochronology
Document Type: Serial
Bibliographic Level: Analytic
Annotation: GSA Data Repository item 2017396
Illustration Description: illus. incl. 2 tables, geol. sketch maps
N36°00'00" - N37°15'00", W117°30'00" - W116°30'00"
Secondary Affiliation: U. S. Geological Survey, USA, United StatesU. S. Bureau of Reclamation, USA, United StatesColumbia University, Barnard College, USA, United StatesBerkeley Geochronology Center, USA, United StatesUniversity of New Mexico, USA, United StatesCalifornia Institute of Technology, USA, United StatesDesert Research Institute, USA, United States
Country of Publication: United States
Secondary Affiliation: GeoRef, Copyright 2022, American Geosciences Institute. Reference includes data from GeoScienceWorld, Alexandria, VA, United States. Reference includes data supplied by the Geological Society of America, Boulder, CO, United States
Update Code: 201817
Program Name: USGSOPNon-USGS publications with USGS authors
Close Modal

or Create an Account

Close Modal
Close Modal