Skip to Main Content
Skip Nav Destination
GEOREF RECORD

Geochemical interactions of shale and brine in autoclave experiments; understanding mineral reactions during hydraulic fracturing of Marcellus and Eagle Ford Shales

Jiemin Lu, Patrick J. Mickler, Jean-Philippe Nicot, Wanjoo Choi, William L. Esch and Roxana Darvari
Geochemical interactions of shale and brine in autoclave experiments; understanding mineral reactions during hydraulic fracturing of Marcellus and Eagle Ford Shales
AAPG Bulletin (October 2017) 101 (10): 1567-1597

Abstract

Geochemical interactions between shale and hydraulic fracturing fluid may affect produced-water chemistry and rock properties. It is important to investigate the rock-water reactions to understand the impacts. Eight autoclave experiments reacting Marcellus and Eagle Ford Shale samples with synthetic brines and a friction reducer were conducted for more than 21 days. To better determine mineral dissolution and precipitation at the rock-water interface, the shale samples were ion milled to create extremely smooth surfaces that were characterized before and after the autoclave experiments using scanning electron microscopy (SEM). This method provides an unprecedented level of detail and the ability to directly compare the same mineral particles before and after the reaction experiments. Dissolution area was quantified by tracing and measuring the geometry of newly formed pores. Changes in porosity and permeability were also measured by mercury intrusion capillary pressure (MICP) tests. Aqueous chemistry and SEM observations show that dissolution of calcite, dolomite, and feldspar and pyrite oxidation are the primary mineral reactions that control the concentrations of Ca, Mg, Sr, Mn, K, Si, and SO (sub 4) in aqueous solutions. Porosity measured by MICP also increased up to 95%, which would exert significant influence on fluid flow in the matrix along the fractures. Mineral dissolution was enhanced and precipitation was reduced in solutions with higher salinity. The addition of polyacrylamide (a friction reducer) to the reaction solutions had small and mixed effects on mineral reactions, probably by plugging small pores and restricting mineral precipitation. The results suggest that rock-water interactions during hydraulic fracturing likely improve porosity and permeability in the matrix along the fractures by mineral dissolution. The extent of the geochemical reactions is controlled by the salinity of the fluids, with higher salinity enhancing mineral dissolution.


ISSN: 0149-1423
EISSN: 1558-9153
Coden: AABUD2
Serial Title: AAPG Bulletin
Serial Volume: 101
Serial Issue: 10
Title: Geochemical interactions of shale and brine in autoclave experiments; understanding mineral reactions during hydraulic fracturing of Marcellus and Eagle Ford Shales
Affiliation: Bureau of Economic Geology, Austin, TX, United States
Pages: 1567-1597
Published: 201710
Text Language: English
Publisher: American Association of Petroleum Geologists, Tulsa, OK, United States
References: 45
Accession Number: 2017-087902
Categories: Economic geology, geology of energy sources
Document Type: Serial
Bibliographic Level: Analytic
Illustration Description: illus. incl. 5 tables, sketch maps
N38°25'00" - N42°00'00", W84°49'60" - W80°31'60"
N39°43'00" - N42°17'60", W80°31'60" - W74°40'00"
N25°45'00" - N36°30'00", W106°30'00" - W93°30'00"
N37°15'00" - N40°40'00", W82°30'00" - W77°45'00"
Secondary Affiliation: Statoil, Research and Technology, USA, United StatesExxonMobil Upstream Research Company, USA, United States
Country of Publication: United States
Secondary Affiliation: GeoRef, Copyright 2017, American Geosciences Institute. Reference includes data from GeoScienceWorld, Alexandria, VA, United States. Reference includes data supplied by American Association of Petroleum Geologists, Tulsa, OK, United States
Update Code: 201746
Close Modal

or Create an Account

Close Modal
Close Modal