Skip to Main Content
Skip Nav Destination

Isotropic elastic wavefield imaging using the energy norm

Daniel Rocha, Nicolay Tanushev and Paul Sava
Isotropic elastic wavefield imaging using the energy norm
Geophysics (July 2016) 81 (4): S207-S219


From the elastic-wave equation and the energy conservation principle, we have derived an energy norm that is applicable to imaging with elastic wavefields. Extending the concept of the norm to an inner product enables us to compare two related wavefields. For example, the inner product of source and receiver wavefields at each spatial location leads to an imaging condition. This new imaging condition outputs a single image representing the total reflection energy, and it contains individual terms related to the kinetic and potential energy (strain energy) from both extrapolated wavefields. An advantage of the proposed imaging condition compared with alternatives is that it does not suffer from polarity reversal at normal incidence, as do conventional images obtained using converted waves. Our imaging condition also accounted for the directionality of the wavefields in space and time. Based on this information, we have modified the imaging condition for attenuation of backscattering artifacts in elastic reverse time migration images. We performed numerical experiments that revealed the improved quality of the energy images compared with their conventional counterparts and the effectiveness of the imaging condition in attenuating backscattering artifacts even in media characterized by high spatial variability.

ISSN: 0016-8033
EISSN: 1942-2156
Coden: GPYSA7
Serial Title: Geophysics
Serial Volume: 81
Serial Issue: 4
Title: Isotropic elastic wavefield imaging using the energy norm
Affiliation: Colorado School of Mines, Center for Wave Phenomena, Golden, CO, United States
Pages: S207-S219
Published: 201607
Text Language: English
Publisher: Society of Exploration Geophysicists, Tulsa, OK, United States
References: 33
Accession Number: 2016-076652
Categories: Applied geophysics
Document Type: Serial
Bibliographic Level: Analytic
Annotation: Includes appendices
Illustration Description: illus.
Secondary Affiliation: Z-Terra, USA, United States
Country of Publication: United States
Secondary Affiliation: GeoRef, Copyright 2017, American Geosciences Institute. Reference includes data from GeoScienceWorld, Alexandria, VA, United States. Reference includes data supplied by Society of Exploration Geophysicists, Tulsa, OK, United States
Update Code: 201637
Close Modal

or Create an Account

Close Modal
Close Modal