Skip to Main Content
GEOREF RECORD

Qualitative and quantitative reservoir bitumen characterization; a core to log correlation methodology

Milad Saidian, Torben Rasmussen, Mosab Nasser, Andres Mantilla and Rick Tobin
Qualitative and quantitative reservoir bitumen characterization; a core to log correlation methodology (in Geologic, geophysical, and petrophysical interpretation of core data and well logs, Chicheng Xu (prefacer), Carlos Torres-Verdin (prefacer) and Thaimar Spikes (prefacer))
Interpretation (Tulsa) (February 2015) 3 (1): SA143-SA158

Abstract

Reservoir bitumen is a highly viscous, asphaltene-rich hydrocarbon that can have important effects on reservoir performance. Discriminating between producible oil and reservoir bitumen is critical for recoverable hydrocarbon volume calculations and production planning, yet the lack of resistivity contrast between the two makes it difficult, if not impossible, to make such differentiation using conventional logs. However, the nuclear magnetic resonance (NMR) response in bitumen-rich zones is dominated by short transverse relaxation times (T (sub 2) ) and a low apparent fluid hydrogen index (HI (sub app) ), providing an opportunity to identify the presence of reservoir bitumen. Therefore, NMR logging technology becomes crucial in the characterization of reservoirs in which the presence of bitumen may be of concern. We used NMR and other log data to identify and quantify the occurrence of reservoir bitumen in a carbonate reservoir. A thorough petrophysical evaluation was performed using a full suite of logs, formation pressure measurements, and laboratory core analysis data. We discuss several quick methods to identify intervals with a higher chance of reservoir bitumen presence. The short transverse relaxation times (T (sub 2) ) and consequently lower T (sub 2) logarithmic mean time values are characteristics of bitumen-rich zones. Another characteristic is low HI (sub app) in these zones and consequently lower NMR porosity estimates when compared to porosity estimates from the density and neutron tools. We analyzed 2D longitudinal-transverse relaxation time (T (sub 1) -T (sub 2) ) maps for core samples at different depths to confirm the presence of reservoir bitumen in some wells using laboratory low-field NMR data. We observed a high T (sub 1) -T (sub 2) ratio at various depths, which is an indication of high-molecular-weight hydrocarbons. The presence of bitumen at the same depths was confirmed by thin section analysis, and it is the likely cause for failed formation pressure testing attempts at those depth intervals. Partial cleaning of reservoir bitumen-rich core plugs results in helium-injection porosity estimates that are too low, and they are closer to the NMR porosity than to density porosity, the latter being more consistent with actual values. In addition, the grain density (GD) calculated by He injection is significantly lower than the GD estimated from elemental capture spectroscopy and X-ray diffraction techniques. Disregarding these effects complicates the core to log correlation, which is common practice for porosity calculations using the density log. A volumetric rock model was used to reconcile core and log data as well as to calculate the saturation of reservoir bitumen. The methodologies for reservoir bitumen characterization introduced here can be applied successfully in different reservoirs for more reliable and precise reservoir evaluation and production planning.


ISSN: 2324-8858
EISSN: 2324-8866
Serial Title: Interpretation (Tulsa)
Serial Volume: 3
Serial Issue: 1
Title: Qualitative and quantitative reservoir bitumen characterization; a core to log correlation methodology
Title: Geologic, geophysical, and petrophysical interpretation of core data and well logs
Author(s): Saidian, MiladRasmussen, TorbenNasser, MosabMantilla, AndresTobin, Rick
Author(s): Xu, Chichengprefacer
Author(s): Torres-Verdin, Carlosprefacer
Author(s): Spikes, Thaimarprefacer
Affiliation: Colorado School of Mines, Department of Petroleum Engineering, Golden, CO, United States
Affiliation: BHP Billiton Petroleum, Houston, TX, United States
Pages: SA143-SA158
Published: 201502
Text Language: English
Publisher: Society of Exploration Geophysicists, Tulsa, OK, United States
References: 22
Accession Number: 2016-006936
Categories: Economic geology, geology of energy sources
Document Type: Serial
Bibliographic Level: Analytic
Illustration Description: illus. incl. 1 table
Secondary Affiliation: University of Texas at Austin, USA, United StatesMaersk Oil, USA, United States
Source Note: Online First
Country of Publication: United States
Secondary Affiliation: GeoRef, Copyright 2017, American Geosciences Institute. Reference includes data from GeoScienceWorld, Alexandria, VA, United States. Reference includes data supplied by Society of Exploration Geophysicists, Tulsa, OK, United States
Update Code: 201604
Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal