Skip to Main Content

3D printing sandstone porosity models

Sergey Ishutov, Franciszek J. Hasiuk, Chris Harding and Joseph N. Gray
3D printing sandstone porosity models (in Interpretation 3D visualization, Steve Adcock (prefacer), Jean Yves Chatellier (prefacer) and Linda R. Sternbach (prefacer))
Interpretation (Tulsa) (August 2015) 3 (3): SX49-SX61


The petroleum industry requires new technologies to improve the economics of exploration and production. Digital rock physics is a methodology that seeks to revolutionize reservoir characterization, an essential step in reservoir assessment, using computational methods. A combination of X-ray computed microtomography, digital pore network modeling, and 3D printing technology represents a novel workflow for transferring digital rock models into tangible samples that can be manufactured in a variety of materials and tested with standard laboratory equipment. Accurate replication of pore networks depends on the resolution of tomographic images, rock sample size, statistical algorithms for digital modeling, and the resolution of 3D printing. We performed this integrated approach on a sample of Idaho Gray Sandstone with an estimated porosity of 29% and permeability of 2200 mD. Tomographic images were collected at resolutions of 30 and 7 mu m per voxel. This allowed the creation of digital porosity models segmented into grains and pores. Surfaces separating pores from grains were extracted from the digital rock volume and 3D printed in plastic as upscaled tangible models. Two model types, normal (with pores as voids) and inverse (with pores as solid), allowed visualization of the geometry of the grain matrix and topology of pores, while allowing characterization of pore connectivity. The current resolution of commodity 3D printers with a plastic filament (30 mu m for pore space and 16 mu m for grain matrix) is too low to precisely reproduce the Idaho Gray Sandstone at its original scale. However, the workflow described here also applies to advanced high-resolution 3D printers, which have been becoming more affordable with time. In summary, with its scale flexibility and fast manufacturing time, 3D printing has the potential to become a powerful tool for reservoir characterization.

ISSN: 2324-8858
EISSN: 2324-8866
Serial Title: Interpretation (Tulsa)
Serial Volume: 3
Serial Issue: 3
Title: 3D printing sandstone porosity models
Title: Interpretation 3D visualization
Author(s): Ishutov, SergeyHasiuk, Franciszek J.Harding, ChrisGray, Joseph N.
Author(s): Adcock, Steveprefacer
Author(s): Chatellier, Jean Yvesprefacer
Author(s): Sternbach, Linda R.prefacer
Affiliation: Iowa State University, Department of Geological and Atmospheric Sciences, Ames, IA, United States
Affiliation: dGB Earth Sciences, Sugar Land, TX, United States
Pages: SX49-SX61
Published: 201508
Text Language: English
Publisher: Society of Exploration Geophysicists, Tulsa, OK, United States
References: 15
Accession Number: 2016-006923
Categories: Economic geology, geology of energy sources
Document Type: Serial
Bibliographic Level: Analytic
Illustration Description: illus. incl. 1 table
Secondary Affiliation: Star Creek Energy, USA, United States
Source Note: Online First
Country of Publication: United States
Secondary Affiliation: GeoRef, Copyright 2017, American Geosciences Institute. Reference includes data from GeoScienceWorld, Alexandria, VA, United States. Reference includes data supplied by Society of Exploration Geophysicists, Tulsa, OK, United States
Update Code: 201604
Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal