High-flying diatoms; widespread dispersal of microorganisms in an explosive volcanic eruption
High-flying diatoms; widespread dispersal of microorganisms in an explosive volcanic eruption
Geology (Boulder) (September 2013) 41 (11): 1187-1190
Explosive eruptions create a transient bridge between the solid Earth and atmosphere, frequently injecting volcanic aerosols to stratospheric levels. Although known to disrupt terrestrial and aquatic ecosystems at the surface, the role of explosive volcanism in airborne transport of microscopic organisms has never been characterized. This study documents abundant freshwater diatoms (microskeletons of siliceous algae) in widespread tephra from the 25.4 ka Oruanui eruption of Taupo volcano, New Zealand. By matching the tephra-hosted species assemblages to those in coerupted clasts of lacustrine sediment, we demonstrate that approximately 0.6 km (super 3) of diatom remains were incorporated during magma-water interaction with a lake system overlying the vents, and were dispersed along with fine ash particles hundreds of kilometers downwind. One of the dominant species, Cyclostephanos novaezeelandiae, is endemic to New Zealand's North Island and serves as a unique identifier of the eruptive source region. Our results suggest that dispersal of microorganisms may be an overlooked feature of a number of ancient and modern eruptions, and indicate a novel pathway of microbe transport in airborne volcanic plumes. We conclude that the biogenic signatures contained within distal tephras have potential application in the characterization of eruption dynamics, location, and environmental settings of volcanic source areas.