Skip to Main Content
GEOREF RECORD

A stratigraphic framework for Late Jurassic-Early Cretaceous gas-bearing strata (Monteith Formation) in the subsurface of northwest Alberta

Brett D. Miles, Ross B. Kukulski, M. Keegan Raines, John-Paul Zonneveld, Andrew L. Leier and Stephen M. Hubbard
A stratigraphic framework for Late Jurassic-Early Cretaceous gas-bearing strata (Monteith Formation) in the subsurface of northwest Alberta
Bulletin of Canadian Petroleum Geology (March 2012) 60 (1): 3-36

Abstract

The entire Late Jurassic-Early Cretaceous stratal package between the Fernie Formation and the Cadomin Formation, from Townships 62-74 in the subsurface of northwestern Alberta, is assigned to the Monteith Formation (Minnes Group). Three mappable units are present, informally termed Monteith A, B and C, from youngest to oldest. The Monteith C was deposited in a marginal marine-deltaic depositional setting. Upward, the transition to coastal plain (Monteith B) and fluvial (Monteith A) depositional settings records a continuous progradation of a long-lived depositional system. Mapping of these units is aided by identification of regionally extensive marine flooding surfaces in the Monteith C, which are used as stratigraphic datums. The thickness of the Monteith Formation decreases from 450 m in the southwestern portion of the study area to a zero-edge in the northeast. The Monteith A, B and C are up to 160 m, 100 m and 200 m thick, respectively. Depositional thinning to the northeast is prevalent, but the primary reason for gross stratal thinning is substantial incision associated with the overlying sub-Cadomin unconformity. The Monteith Formation in Alberta was deposited in a foredeep setting. Regional thickness trends suggest increased accommodation to the southwest and the strata are interpreted to have accumulated on the cratonward side of the foredeep axis. These observations, as well as evidence for basin axial channel flow to the northwest during deposition of the Monteith C, support an interpretation that the foreland basin had initiated prior to Monteith Formation deposition. Basin physiography, as well as uplift and denudation of the Cordillera, affected the depositional evolution of units in the study area. Ultimately, these factors strongly influenced the distribution of reservoir rocks (primarily sandstones of the Monteith A and C), which are part of the Deep Basin Gas System. The presence or absence of permeability enhancing fractures also impacts reservoir quality and well deliverability in the Monteith Formation.


ISSN: 0007-4802
Coden: BCPGAI
Serial Title: Bulletin of Canadian Petroleum Geology
Serial Volume: 60
Serial Issue: 1
Title: A stratigraphic framework for Late Jurassic-Early Cretaceous gas-bearing strata (Monteith Formation) in the subsurface of northwest Alberta
Affiliation: University of Calgary, Department of Geoscience, Calgary, AB, Canada
Pages: 3-36
Published: 201203
Text Language: English
Summary Language: French
Publisher: Canadian Society of Petroleum Geologists, Calgary, AB, Canada
References: 104
Accession Number: 2012-101416
Categories: StratigraphyEconomic geology, geology of energy sources
Document Type: Serial
Bibliographic Level: Analytic
Illustration Description: illus. incl. sects., strat. cols., 4 tables, geol. sketch maps
Secondary Affiliation: University of Alberta, CAN, Canada
Country of Publication: Canada
Secondary Affiliation: GeoRef, Copyright 2017, American Geosciences Institute. Abstract, Copyright, Canadian Society of Petroleum Geologists. Reference includes data from GeoScienceWorld, Alexandria, VA, United States
Update Code: 201252
Close Modal

or Create an Account

Close Modal
Close Modal