Skip to Main Content
Skip Nav Destination
GEOREF RECORD

Recent faulting in the Gulf of Santa Catalina; San Diego to Dana Point

Holly F. Ryan, Mark R. Legg, James E. Conrad and Ray W. Sliter
Recent faulting in the Gulf of Santa Catalina; San Diego to Dana Point (in Earth science in the urban ocean; the Southern California continental borderland, Homa J. Lee (editor) and William R. Normark (editor))
Special Paper - Geological Society of America (2009) 454: 291-315

Abstract

We interpret seismic-reflection profiles to determine the location and offset mode of Quaternary offshore faults beneath the Gulf of Santa Catalina in the inner California Continental Borderland. These faults are primarily northwest-trending, right-lateral, strike-slip faults, and are in the offshore Rose Canyon-Newport-Inglewood, Coronado Bank, Palos Verdes, and San Diego Trough fault zones. In addition we describe a suite of faults imaged at the base of the continental slope between Dana Point and Del Mar, California. Our new interpretations are based on high-resolution, multichannel seismic (MCS), as well as very high resolution Huntec and GeoPulse seismic-reflection profiles collected by the U.S. Geological Survey from 1998 to 2000 and MCS data collected by WesternGeco in 1975 and 1981, which have recently been made publicly available. Between La Jolla and Newport Beach, California, the Rose Canyon and Newport-Inglewood fault zones are multistranded and generally underlie the shelf break. The Rose Canyon fault zone has a more northerly strike; a left bend in the fault zone is required to connect with the Newport-Inglewood fault zone. A prominent active anticline at mid-slope depths (300-400 m) is imaged seaward of where the Rose Canyon fault zone merges with the Newport-Inglewood fault zone. The Coronado Bank fault zone is a steeply dipping, northwest-trending zone consisting of multiple strands that are imaged from south of the U.S.-Mexico border to offshore of San Mateo Point. South of the La Jolla fan valley, the Coronado Bank fault zone is primarily transtensional; this section of the fault zone ends at the La Jolla fan valley in a series of horsetail splays. The northern section of the Coronado Bank fault zone is less well developed. North of the La Jolla fan valley, the Coronado Bank fault zone forms a positive flower structure that can be mapped at least as far north as Oceanside, a distance of approximately 35 km. However, north of Oceanside, the Coronado Bank fault zone is more discontinuous and in places has no strong physiographic expression. The San Diego Trough fault zone consists of one or two well-defined linear fault strands that cut through the center of the San Diego Trough and strike N30 degrees W. North of the La Jolla fan valley, this fault zone steps to the west and is composed of up to four fault strands. At the base of the continental slope, faults that show recency of movement include the San Onofre fault and reverse, oblique-slip faulting associated with the San Mateo and Carlsbad faults. In addition, the low-angle Oceanside detachment fault is imaged beneath much of the continental slope, although reflectors associated with the detachment are more prominent in the area directly offshore of San Mateo Point. North of San Mateo Point, the Oceanside fault is imaged as a northeast-dipping detachment surface with prominent folds deforming hanging-wall strata. South of San Mateo point, reflectors associated with the Oceanside detachment are often discontinuous with variable dip as imaged in WesternGeco MCS data. Recent motion along the Oceanside detachment as a reactivated thrust fault appears to be limited primarily to the area between Dana and San Mateo Points. Farther south, offshore of Carlsbad, an additional area of folding associated with the Carlsbad fault also is imaged near the base of the slope. These folds coincide with the intersection of a narrow subsurface ridge that trends at a high angle to and intersects the base of the continental slope. The complex pattern of faulting observed along the base of the continental slope associated with the San Mateo, San Onofre, and Carlsbad fault zones may be the result of block rotation. We propose that the clockwise rotation of a small crustal block between the Newport-Inglewood-Rose Canyon and Coronado Bank fault zones accounts for the localized enhanced folding along the Gulf of Santa Catalina margin. Prominent subsurface basement ridges imaged offshore of Dana Point may inhibit along-strike block translation, and thus promote block rotation.


ISSN: 0072-1077
EISSN: 2331-219X
Coden: GSAPAZ
Serial Title: Special Paper - Geological Society of America
Serial Volume: 454
Title: Recent faulting in the Gulf of Santa Catalina; San Diego to Dana Point
Title: Earth science in the urban ocean; the Southern California continental borderland
Author(s): Ryan, Holly F.Legg, Mark R.Conrad, James E.Sliter, Ray W.
Author(s): Lee, Homa J.editor
Author(s): Normark, William R.editor
Affiliation: U. S. Geological Survey, Menlo Park, CA, United States
Affiliation: U. S. Geological Survey, Menlo Park, CA, United States
Pages: 291-315
Published: 2009
Text Language: English
Publisher: Geological Society of America (GSA), Boulder, CO, United States
References: 71
Accession Number: 2009-074435
Categories: Structural geologyApplied geophysics
Document Type: Serial
Bibliographic Level: Analytic
Illustration Description: illus. incl. sects., 1 table, sketch maps
N32°30'00" - N33°40'00", W118°00'00" - W117°25'00"
Secondary Affiliation: Bedford Institute of Oceanography, CAN, CanadaLegg Geophysical, USA, United States
Country of Publication: United States
Secondary Affiliation: GeoRef, Copyright 2017, American Geosciences Institute.
Update Code: 200940
Program Name: USGSOPNon-USGS publications with USGS authors
Close Modal

or Create an Account

Close Modal
Close Modal