Skip to Main Content
Skip Nav Destination
GEOREF RECORD

Shale gas potential of the Lower Jurassic Gordondale Member, northeastern British Columbia, Canada

Daniel J. K. Ross and R. Marc Bustin
Shale gas potential of the Lower Jurassic Gordondale Member, northeastern British Columbia, Canada
Bulletin of Canadian Petroleum Geology (March 2007) 55 (1): 51-75

Abstract

The Lower Jurassic Gordondale Member is an organic-rich mudrock and is widely considered to have potential as a shale gas reservoir. Influences of Gordondale mudrock composition on total gas capacities (sorbed and free gas) have been determined to assess the shale gas resource potential of strata in the Peace River district, northeastern British Columbia. Sorbed gas capacities of moisture-equilibrated samples increase over a range of 0.5 to 12 weight percent total organic carbon content (TOC). Methane adsorption capacities range from 0.05 cc/g to over 2 cc/g in organic-rich zones (at 6 MPa and 30 degrees C). Sorption capacities of mudrocks under dry conditions are greater than moisture equilibrated conditions due to water occupation of potential sorption sites. However, there is no consistent decrease of sorption capacity with increasing moisture as the relationship is masked by both the amount of organic matter and thermal maturation level. Clays also affect total gas capacities in as much as clay-rich mudrocks have high porosity which may be available for free gas. Gordondale samples enriched with carbonate (calcite and dolomite) typically have lower total porosities than carbonate-poor rocks and hence have lower potential free gas contents. On a regional reservoir scale, a large proportion of the Gordondale total gas capacity is free gas storage (intergranular porosity), ranging from 0.1-22 Bcf/section (0.003-0.66 m (super 3) /section). Total gas-in-place capacity ranges from 1-31.4 Bcf/ section (0.03-0.94 m (super 3) /section). The greatest potential for gas production is in the south of the study area (93-P) due to higher thermal maturity, TOC enrichment, higher reservoir pressure, greater unit thickness and improved fracture-potential.


ISSN: 0007-4802
Serial Title: Bulletin of Canadian Petroleum Geology
Serial Volume: 55
Serial Issue: 1
Title: Shale gas potential of the Lower Jurassic Gordondale Member, northeastern British Columbia, Canada
Affiliation: University of British Columbia, Department of Geological Sciences, Vancouver, BC, Canada
Pages: 51-75
Published: 200703
Text Language: English
Summary Language: French
Publisher: Canadian Society of Petroleum Geologists, Calgary, AB, Canada
References: 61
Accession Number: 2007-053195
Categories: Economic geology, geology of energy sources
Document Type: Serial
Bibliographic Level: Analytic
Illustration Description: illus. incl. strat. cols., 5 tables, sketch maps
N48°25'00" - N60°00'00", W139°00'00" - W114°00'00"
Country of Publication: Canada
Secondary Affiliation: GeoRef, Copyright 2017, American Geosciences Institute. Abstract, Copyright, Canadian Society of Petroleum Geologists. Reference includes data from GeoScienceWorld, Alexandria, VA, United States
Update Code: 200728
Close Modal

or Create an Account

Close Modal
Close Modal