Skip to Main Content
Skip Nav Destination
GEOREF RECORD

The influence of hydraulic nonequilibrium on pressure plate data

G. W. Gee, A. L. Ward, Z. F. Zhang, G. S. Campbell and J. Mathison
The influence of hydraulic nonequilibrium on pressure plate data
Vadose Zone Journal (August 2002) 1 (1): 172-178

Abstract

Pressure plates are used routinely to measure water-retention characteristics of soils. Plates of varying porosity are used, depending on the pressure range of interest. For applied pressures up to 1.5 MPa, 15-bar porous ceramic plates with fine porosity are used because of their high bubbling pressure (>1.5 MPa), which limits airflow through the plate. The typical saturated hydraulic conductivity of the 15-bar plate is <3 X 10 (super -11) m s (super -1) . Low plate conductance coupled with decreasing soil hydraulic conductivities at high pressures strongly influence equilibrium times, which theoretically may extend to months or years. We measured the soil water pressures (suctions) for three soils, a sand, a silt loam, and a clay, placed on 15-bar pressure plates for 10 d or longer, with and without static loads and with and without using a kaolinite slurry to improve plate contact. Total matric suctions, inferred from peltier psychrometry data, were always <1.0 MPa. When sample height was increased from 1.5 to 3 cm, the water contents increased and total suctions decreased to 0.15 MPa for sand, 0.3 MPa for silt loam, and 0.55 MPa for clay. These data suggest that alternative methods other than pressure plates may be required to measure equilibrium water suctions of soils in reasonable times in the 1.5-MPa (15-bar) pressure range and that loading of the samples and use of kaolinite slurry appear to be ineffective in speeding equilibrium.


ISSN: 1539-1663
Serial Title: Vadose Zone Journal
Serial Volume: 1
Serial Issue: 1
Title: The influence of hydraulic nonequilibrium on pressure plate data
Affiliation: Pacific Northwest National Laboratory, Environmental Technology Division, Richland, WA, United States
Pages: 172-178
Published: 200208
Text Language: English
Publisher: Soil Science Society of America, Madison, WI, United States
References: 23
Accession Number: 2006-007774
Categories: Engineering geologySoils
Document Type: Serial
Bibliographic Level: Analytic
Annotation: Accessed on December 19, 2005
Illustration Description: illus. incl. 4 tables
Source Medium: WWW
Secondary Affiliation: Decagon Devices, USA, United StatesWashington State University, USA, United States
Country of Publication: United States
Secondary Affiliation: GeoRef, Copyright 2018, American Geosciences Institute.
Update Code: 200603
Close Modal

or Create an Account

Close Modal
Close Modal