Skip to Main Content
Skip Nav Destination
GEOREF RECORD

Three-dimensional gravity inversion using simulated annealing; constraints on the diapiric roots of allochthonous salt structures

Seiichi Nagihara and Stuart A. Hall
Three-dimensional gravity inversion using simulated annealing; constraints on the diapiric roots of allochthonous salt structures
Geophysics (October 2001) 66 (5): 1438-1449

Abstract

In the northern continental slope of the Gulf of Mexico, large oil and gas reservoirs are often found beneath sheetlike, allochthonous salt structures that are laterally extensive. Some of these salt structures retain their diapiric feeders or roots beneath them. These hidden roots are difficult to image seismically. In this study, we develop a method to locate and constrain the geometry of such roots through 3-D inverse modeling of the gravity anomalies observed over the salt structures. This inversion method utilizes a priori information such as the upper surface topography of the salt, which can be delineated by a limited coverage of 2-D seismic data; the sediment compaction curve in the region; and the continuity of the salt body. The inversion computation is based on the simulated annealing (SA) global optimization algorithm. The SA-based gravity inversion has some advantages over the approach based on damped least-squares inversion. It is computationally efficient, can solve underdetermined inverse problems, can more easily implement complex a priori information, and does not introduce smoothing effects in the final density structure model. We test this inversion method using synthetic gravity data for a type of salt geometry that is common among the allochthonous salt structures in the Gulf of Mexico and show that it is highly effective in constraining the diapiric root. We also show that carrying out multiple inversion runs helps reduce the uncertainty in the final density model.


ISSN: 0016-8033
EISSN: 1942-2156
Coden: GPYSA7
Serial Title: Geophysics
Serial Volume: 66
Serial Issue: 5
Title: Three-dimensional gravity inversion using simulated annealing; constraints on the diapiric roots of allochthonous salt structures
Affiliation: Texas Tech University, Department of Geosciences, Lubbock, TX, United States
Pages: 1438-1449
Published: 200110
Text Language: English
Publisher: Society of Exploration Geophysicists, Tulsa, OK, United States
References: 30
Accession Number: 2002-003702
Categories: Economic geology, geology of energy sourcesApplied geophysics
Document Type: Serial
Bibliographic Level: Analytic
Illustration Description: illus.
N18°00'00" - N30°04'00", W98°00'00" - W80°30'00"
Secondary Affiliation: University of Houston, USA, United States
Country of Publication: United States
Secondary Affiliation: GeoRef, Copyright 2017, American Geosciences Institute.
Update Code: 200202
Close Modal

or Create an Account

Close Modal
Close Modal