Skip to Main Content
Skip Nav Destination
GEOREF RECORD

Pangaean climate during the Early Jurassic; GCM simulations and the sedimentary record of paleoclimate

Mark A. Chandler, David Rind and Reto Ruedy
Pangaean climate during the Early Jurassic; GCM simulations and the sedimentary record of paleoclimate
Geological Society of America Bulletin (May 1992) 104 (5): 543-559

Abstract

Results from new simulations of the Early Jurassic climate show that increased ocean heat transport may have been the primary force generating warmer climates during the past 180 m.y. The simulations, conducted using the general circulation model (GCM) at the Goddard Institute for Space Studies, include realistic representations of paleocontinental distribution, topography, epeiric seas, and vegetation, in order to facilitate comparisons between model results and paleoclimate data. Three major features of the simulated Early Jurassic climate include the following. (1) A global warming, compared to the present, of 5 degrees C to 10 degrees C, with temperature increases at high latitudes five times this global average. Average summer temperatures exceed 35 degrees C in low-latitude regions of western Pangaea where eolian sandstones testify to the presence of vast deserts. (2) Simulated precipitation and evaporation patterns agree closely with the moisture distribution interpreted from evaporites, and coal deposits. High rainfall rates are associated primarily with monsoons that originate over the warm Tethys Ocean. Unlike the megamonsoons proposed in previous studies, these systems are found to be associated with localized pressure cells whose positions are controlled by topography and coastal geography. (3)Decreases in planetary albedo, occurring because of reductions in sea ice, snow cover, and low clouds, and increases in atmospheric water vapor are the positive climate feed-backs that amplify the global warming.Similar to other Mesozoic climate simulations, our model finds that large seasonal temperature fluctuations occurred over mid-and high-latitude continental interiors, refuting paleoclimate evidence that suggests more equable conditions. Sensitivity experiments suggest that some combination of ocean heat transport increase, high levels of CO (sub 2) , and improved modeling of ground hydrological schemes may lead to a better match with the geologic record. We speculate, also, that the record itself is biased toward equable climatic conditions, a suggestion that may be tested by comparing GCM results with more detailed phytogeographic analyses.


ISSN: 0016-7606
EISSN: 1943-2674
Coden: BUGMAF
Serial Title: Geological Society of America Bulletin
Serial Volume: 104
Serial Issue: 5
Title: Pangaean climate during the Early Jurassic; GCM simulations and the sedimentary record of paleoclimate
Affiliation: Lamont-Doherty Geol. Obs., Palisades, NY, United States
Pages: 543-559
Published: 199205
Text Language: English
Publisher: Geological Society of America (GSA), Boulder, CO, United States
References: 101
Accession Number: 1992-016692
Categories: Stratigraphy
Document Type: Serial
Bibliographic Level: Analytic
Illustration Description: illus. incl. 3 tables, sketch map
Secondary Affiliation: Goddard Space Flight Cent., USA, United States
Country of Publication: United States
Secondary Affiliation: GeoRef, Copyright 2019, American Geosciences Institute.
Update Code: 1992
Close Modal

or Create an Account

Close Modal
Close Modal