Abstract

Multioffset vertical seismic profile (VSP) experiments, commonly referred to as walkaways, enable anisotropy to be measured reliably in the field. The results can be fed into modeling programs to study the impact of anisotropy on velocity analysis, migration, and amplitude versus offset (AVO). Properly designed multioffset VSPs can also provide the target AVO response measured under optimum conditions, since the wavelet is recorded just above the reflectors of interest with minimal reflection point dispersal.

In this paper, the multioffset VSP technique is extended to include multioffset azimuths, and a multiazimuthal multiple VSP data set acquired over a carbonate reservoir is analyzed for P-wave anisotropy and AVO. Direct arrival times down to the overlying shale and reflection times and amplitudes from the carbonate are analyzed. Data analysis involves a three-term fit to account for nonhyperbolic moveout, dip, and azimuthal anisotropy. Results indicate that the overlying shale is transversely isotropic with a vertical axis of symmetry (VTI), while the carbonate shows 4–5% azimuthal anisotropy in traveltimes. The fast direction is consistent with the maximum horizontal stress orientation determined from break-out logs and is also consistent with the strike of major faults. AVO analysis of the reflection from the top of the carbonate layer shows a critical angle reduction in the fast direction and maximum gradient in the slow direction. This agrees with modeling and indicates a greater amplitude sensitivity in the slow direction–the direction perpendicular to fracture strike. In principle, 3-D surveys should have wide azimuthal coverage to characterize fractured reservoirs. If this is not possible, it is important to have azimuthal line coverage in the minimum horizontal stress direction to optimize the use of AVO for fractured reservoir characterization. This direction can be obtained from multiazimuthal walkaways using the azimuthal P-wave analysis techniques presented.

This content is PDF only. Please click on the PDF icon to access.

First Page Preview

First page PDF preview