Transient electromagnetic (TEM) borehole responses of 3-D vertical and horizontal tabular bodies in a half-space are calculated to assess the effect of a conductive host. The transmitter is a large loop at the surface of the earth, and the receiver measures the time derivative of the vertical magnetic field. When the host is conductive (100 Omega .m), the borehole response is due mainly to current channeled through the body. The observed magnetic-field response can be visualized as due to galvanic currents that pass through the conductor and return in the half-space. When the host resistivity is increased, the magnetic field of the conductor is influenced more by vortex currents that flow in closed loops inside the conductor. For a moderately resistive host (1000 Omega .m), the magnetic field of the body is caused by both vortex and galvanic currents. The galvanic response is observed at early times, followed by the vortex response at later times if the body is well coupled to the transmitter. If the host is very resistive, the galvanic response vanishes; and the response of the conductor is caused only by vortex currents.The shapes of the borehole profiles change considerably with changes in the host resistivity because vortex and galvanic current distributions are very different. When only the vortex response is observed, it is easy to distinguish vertical and horizontal conductors. However, in a conductive host where the galvanic response is dominant, it is difficult to interpret the geometry of the body; only the approximate location of the body can be determined easily. For a horizontal conductor and a single transmitting loop, only the galvanic response enables one to determine whether the conductor is between the transmitter and the borehole or beyond the borehole. A field example shows behavior similar to that of our theoretical results.

This content is PDF only. Please click on the PDF icon to access.

First Page Preview

First page PDF preview
You do not have access to this content, please speak to your institutional administrator if you feel you should have access.